The development of degradable plastic foams is in line with the current development concept of being pollution free and sustainable. Poly(lactic acid) (PLA) microporous foam with biodegradability, good heat resistance, biocompatibility, and mechanical properties can be successfully applied in cushioning packaging, heat insulation, noise reduction, filtration and adsorption, tissue engineering, and other fields. This paper summarizes and critically evaluates the latest research on preparing PLA microporous materials by supercritical carbon dioxide (scCO) physical foaming since 2020. This paper first introduces the scCO foaming technologies for PLA and its composite foams, discusses the CO-assisted foaming processes, and analyzes the effects of process parameters on PLA foaming. After that, the paper reviews the effects of modification methods such as chemical modification, filler filling, and mixing on the rheological and crystallization behaviors of PLA and provides an in-depth analysis of the mechanism of PLA foaming behavior to provide theoretical guidance for future research on PLA foaming. Lastly, the development and applications of PLA microporous materials based on scCO foaming technologies are prospected.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611929 | PMC |
http://dx.doi.org/10.3390/polym14204320 | DOI Listing |
RSC Adv
January 2025
School of Materials Science and Physics, China University of Mining and Technology Xuzhou 221116 China
Heteroatom-doped hierarchical porous carbon (AF-MMTC) was prepared with hard template and salt template dual templating agents, and the effects of salt template additions on its micro-morphology, pore structure, specific surface area and electrochemical properties were investigated. The salt template not only acts as a template, but also plays the role of a pore-making agent. AF-MMTC5 has a high specific surface area of 1772 m g, a 41% microporous content and 1.
View Article and Find Full Text PDFNano Lett
January 2025
School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, South Korea.
Membrane-based gas separation offers a promising alternative route to energy-intensive industrial gas separation processes. Conventional microporous membranes often exhibit low gas selectivities for gases with similar kinetic diameters, primarily due to large pore sizes and reliance on Knudsen selectivity. In this study, we present self-assembled gold nanoparticle (Au NP) membranes that enable molecular gas separation within the kinetic diameter range of small gases such as H, CO, and O.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
Polymers of intrinsic microporosity (PIMs) are an emerging class of amorphous organic porous materials with solution processability, which are widely used in a multitude of fields such as gas separation, ion conduction, nanofiltration, etc. PIMs have adjustable pore structure and functional pore wall, so it can achieve selective sieving for specific substances. In order to meet the functional requirements of PIMs, two principal methods are used to synthesize functional PIMs, namely, post-modification of PIMs precursors and functionalization of monomers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
Heterogeneity engineering provides an effective route to manipulate the chemical and physical properties of covalent organic frameworks (COFs) but is still under development for their single-crystal form. Here, we report the strategy based on a combination of the template-assisted modulated synthesis with a one-pot crystallization-reduction method to directly construct ordered macro-microporous single crystals of an amine-linked three-dimensional (3D) COF (OM-COF-300-SR). In this strategy, the colloidal crystal-templating synthesis not only assists the formation of ordered macropores but also greatly facilitates the in situ conversion of linkages (from imine to amine) in the COF-300 single crystals.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
College of Food Science and Engineering, South China University of Technology, Guangzhou, China.
Background: Polyether ether ketone (PEEK) was modified by a sulfuric and nitric acid mixed system to improve the solubility of the material and the gas selective permeability of the film. SN1 and SN5, synthesized from mixed acid systems (with ratios of nitric acid and sulfuric acid of 1:1 and 1:5, respectively) were chosen because they had comparable nitro groups but differing sulfonyl groups. To investigate the impact of the type and content of sulfonated and nitrated polyether ether ketone (SNPEEK) on the structure and physicochemical properties of the films, SN1/polyvinyl chloride (PVC) and SN5/polyvinyl chloride films were made by adding varying amounts of SN1 and SN5 (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!