Polyelectrolyte multilayers (PEM) are versatile tools used to investigate fundamental interactions between material-related parameters and the resulting performance in stem cell differentiation, respectively, in bone tissue engineering. In the present study, we investigate the suitability of PEMs with a varying collagen content for use as drug carriers for the human bone morphogenetic protein 2 (rhBMP-2). We use three different PEM systems consisting either of the positively charged poly-L-lysine or the glycoprotein collagen type I and the negatively charged glycosaminoglycan heparin. For a specific modification of the loading capacity and the release kinetics, the PEMs were stepwise cross-linked before loading with cytokine. We demonstrate the possibility of immobilizing significant amounts of rhBMP-2 in all multilayer systems and to specifically tune its release via cross-linking. Furthermore, we prove that the drug release of rhBMP-2 plays only a minor role in the differentiation of osteoprogenitor cells. We find a significantly higher influence of the immobilized rhBMP-2 within the collagen-rich coatings that obviously represent an excellent mimicry of the native extracellular matrix. The cytokine immobilized in its bioactive form was able to achieve an increase in orders of magnitude both in the early stages of differentiation and in late calcification compared to the unloaded layers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609345PMC
http://dx.doi.org/10.3390/polym14204315DOI Listing

Publication Analysis

Top Keywords

multilayer systems
8
drug release
8
tailored polyelectrolyte
4
polyelectrolyte multilayer
4
systems variation
4
variation polyelectrolyte
4
polyelectrolyte composition
4
composition edc/nhs
4
edc/nhs cross-linking
4
cross-linking controlled
4

Similar Publications

The increasing complexity of biological systems demands advanced analytical approaches to decode the underlying mechanisms of health and disease. Integrative multi-omics approaches use multi-layered datasets such as genomic, transcriptomic, proteomic, and metabolomic data to understand biological processes much more comprehensively compared to the single-omics analysis and to provide a comprehensive view of cellular and molecular processes. However, these integrative approaches have their own computational and analytical challenges due to the large volume and nature of multi-omics data.

View Article and Find Full Text PDF

Protocol for predicting host-microbe interactions and their downstream effect on host cells using MicrobioLink.

STAR Protoc

January 2025

Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Quadram Institute Bioscience, Norwich, Norfolk NR4 7UQ, UK; Earlham Institute, Norwich, Norfolk NR4 7UZ, UK. Electronic address:

Analyzing host-microbe interactions is essential for understanding how microbiota changes disrupt host homeostasis. Here, we present a protocol for predicting host-microbe protein-protein interactions and their downstream effects using MicrobioLink. We describe steps for setting up the environment, installing software, and preparing human transcriptomic and bacterial proteomic data.

View Article and Find Full Text PDF

Prediction of nitrate concentration and the impact of land use types on groundwater in the Nansi Lake Basin.

J Hazard Mater

January 2025

School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430074, China.

Groundwater faces a pervasive threat from anthropogenic nitrate contamination worldwide, particularly in regions characterized by intensive agricultural practices. This study examines groundwater quality in the Nansi Lake Basin (NSLB), emphasizing nitrate (NO-N) contamination. Utilizing 422 groundwater samples, it investigates hydrochemical dynamics and the impact of land use on groundwater composition.

View Article and Find Full Text PDF

Background: Universal access to sexual and reproductive health and rights (SRHR) is fundamental to achieving the Sustainable Development Goals due to its impact on gender equality as well as women's health and survival. In the Democratic Republic of Congo, there are many civil society organizations (CSOs) that are involved in raising awareness of SRHR issues and providing SRHR services to young people. Objective: The aim of this study was to explore the challenges and enabling factors CSOs experience regarding the delivery of SRHR services to young people.

View Article and Find Full Text PDF

Microwave Sensor with Light-Assisted Enhancement Based on TiCT MXene: Toward ppb-Level NO Detection Limits.

ACS Sens

January 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P. R. China.

Chemiresistive sensors are currently the most popular gas sensors, and metal semiconductor oxides are often used as sensitive materials (SMs). However, their high operating temperature means that more energy is required to maintain normal operation of the SM, resulting in an increase in power consumption of the entire sensing system. In order to solve this problem, a microwave gas sensor embedded with multilayer TiCT MXene and split ring resonator (SRR) for nitrogen dioxide (NO) detection was reported in this work.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!