The conversion of agricultural and forestry waste biomass materials into bio-oil by mild hydro-thermal technology has a positive effect on extending the agricultural industry chain and alleviating the world energy crisis. The interaction investigation of biomass components during bio-oil formation can be significant for the efficient conversion of lignocellulose when different raw materials are fed together. In this paper, a bio-oil pyrolysis behavior (thermogravimetric analysis, TG) perspective component interaction investigation of cotton stalks under low-temperature hydro-thermal conversion (220 °C) was studied. Cellulose, hemi-cellulose, lignin, and protein were used as lignocellulose model components, by their simple binary blending and multi-variate blending and combined with thermo-gravimetric analysis and gas chromatography-mass spectrometry (GC-MS) characterization and analysis. The interaction of different model components and real biomass raw material components in the hydro-thermal process was explored. Results showed that the components of hydro-thermal bio-oil from cotton stalks were highly correlated with the interactions between cellulose, hemi-cellulose, lignin, and protein. During the hydro-thermal process, cellulose and hemi-cellulose inhibit each other, which reduces the content of ketones, aldehydes, ethers, and alcohols in bio-oil. Interaction between cellulose and lignin was obvious, which promotes the formation of oligomers, such as ketones, aldehydes, esters, phenols, and aliphatic, while inhibiting the production of aromatic and multi-hybrid compounds. Otherwise, there was no obvious interaction effect between hemi-cellulose and lignin or between lignin and protein. This research will guide the industrialization of lignocellulose, especially the possible co-feed hydro-thermal conversion technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610678PMC
http://dx.doi.org/10.3390/polym14204307DOI Listing

Publication Analysis

Top Keywords

cellulose hemi-cellulose
12
hemi-cellulose lignin
12
lignin protein
12
bio-oil pyrolysis
8
pyrolysis behavior
8
interaction investigation
8
cotton stalks
8
hydro-thermal conversion
8
model components
8
components hydro-thermal
8

Similar Publications

The primary objective of this study is to facilitate the conversion of inorganic selenium (Se) into organic Se within plants via assimilation, subsequently feeding it to livestock and poultry to enhance healthy animal production and yield Se-enriched livestock and poultry products. Therefore, it is imperative to first investigate the impact of varying Se doses on the agronomic traits of plants as well as their forage storage and processing. This experiment investigated the effect of Se fertilizer application on the fermentation quality, chemical composition, and bacterial community of × cv Minmu 7 (HPM7).

View Article and Find Full Text PDF
Article Synopsis
  • Aliphatic amines are a diverse group of amines crucial in various industries like chemistry, agriculture, and medicine, but their production currently relies heavily on unsustainable fossil feedstock, raising health and safety concerns.
  • Shifting to biomass, particularly cellulose and hemicellulose, offers a sustainable alternative for producing these amines, as these materials are abundant and can undergo necessary chemical transformations.
  • The production process for bio-based aliphatic amines is part of a larger circular value chain that includes refining biomass, creating suitable substrates, and incorporating the amines into applications, highlighting the need for a comprehensive approach to address challenges at each stage.
View Article and Find Full Text PDF

Production of sustainable aviation fuels (SAFs) can significantly reduce the aviation industry's carbon footprint. Current pathways that produce SAFs in significant volumes from ethanol and fatty acids can be costly, have a relatively high carbon intensity (CI), and impose sustainability challenges. There is a need for a diversified approach to reduce costs and utilize more sustainable feedstocks effectively.

View Article and Find Full Text PDF

Lignocellulose biomass raw materials have a high value in energy conversion. Recently, there has been growing interest in using microorganisms to secret a series of enzymes for converting low-cost biomass into high-value products such as biofuels. We previously isolated a strain of Penicillium oxalicun 5-18 with promising lignocellulose-degrading capability.

View Article and Find Full Text PDF

Nutritive value of five Cenchrus ciliaris (buffel grass) genotypes (IG96-50, IG96-96, IG96-358, IG96-401 and IG96-403) weredetermined. Their sugar contents (>70 mg/g of dry matter) and ensiling potential were evaluated using in vitro batch culture and in vivo studies. Research indicated significant differences (P < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!