Improved Flexural Properties of Experimental Resin Composites Functionalized with a Customized Low-Sodium Bioactive Glass.

Polymers (Basel)

Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia.

Published: October 2022

This study evaluated the flexural properties of an experimental composite series functionalized with 5-40 wt% of a low-Na F-containing bioactive glass (F-series) and compared it to another experimental composite series containing the same amounts of the conventional bioactive glass 45S5 (C-series). Flexural strength and modulus were evaluated using a three-point bending test. Degree of conversion was measured using Fourier-transform infrared spectroscopy. Weibull analysis was performed to evaluate material reliability. The control material with 0 wt% of bioactive glass demonstrated flexural strength values of 105.1-126.8 MPa). In the C-series, flexural strength ranged between 17.1 and 121.5 MPa and was considerably more diminished by the increasing amounts of bioactive glass than flexural strength in the F-series (83.8-130.2 MPa). Analogously, flexural modulus in the C-series (0.56-6.66 GPa) was more reduced by the increase in bioactive glass amount than in the F-series (5.24-7.56 GPa). The ISO-recommended "minimum acceptable" flexural strength for restorative resin composites of 80 MPa was achieved for all materials in the F-series, while in the C-series, the materials with higher bioactive glass amounts (20 and 40 wt%) failed to meet the requirement of 80 MPa. The degree of conversion in the F-series was statistically similar or higher compared to that of the control composite with no bioactive glass, while the C-series showed a declining degree of conversion with increasing bioactive glass amounts. In summary, the negative effect of the addition of bioactive glass on mechanical properties was notably less pronounced for the customized bioactive glass than for the bioactive glass 45S5; additionally, mechanical properties of the composites functionalized with the customized bioactive glass were significantly less diminished by artificial aging. Hence, the customized bioactive glass investigated in the present study represents a promising candidate for functionalizing ion-releasing resin composites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9607205PMC
http://dx.doi.org/10.3390/polym14204289DOI Listing

Publication Analysis

Top Keywords

bioactive glass
56
flexural strength
20
bioactive
14
glass
14
resin composites
12
degree conversion
12
customized bioactive
12
flexural properties
8
properties experimental
8
composites functionalized
8

Similar Publications

Synthesis and characterizing of MgO, 58S bioactive glass and N carboxymethyl chitosan and coating composites of them on SS316L.

Int J Biol Macromol

December 2024

Department of Materials Science and Engineering, Faculty of Engineering & Technology, Tarbiat Modares Universirty, Tehran, Iran.

One of the most effective ways to solve the problems caused by the presence of steel implants in the body is to apply a coating to them. This study aims to develop and optimize composite coatings of magnesium oxide (MgO), 58S bioactive glass (BG), and N-carboxymethyl chitosan (N-CMC) on stainless steel (SS316L) substrates using the electrophoretic deposition (EPD) method. The synthesized materials were characterized using FTIR, XRD, and SEM to confirm their structure and morphology prior to coating.

View Article and Find Full Text PDF

This study investigated the effects of resin composites (RCs) containing surface pre-reacted glass ionomer (S-PRG) filler on the dentin microtensile bond strength (μTBS) of HEMA-free and HEMA-containing universal adhesives (UAs). Water sorption (WS) and solubility (SL), degree of conversion (DC), and ion release were measured. The UAs BeautiBond Xtreme (BBX; 0% HEMA), Modified Adhesive-1 (E-BBX1; 5% HEMA), Modified Adhesive-2 (E-BBX2; 10% HEMA), and two 2-step self-etch adhesives (2-SEAs): FL-BOND II (FBII; with S-PRG filler) and silica-containing adhesive (E-FBII) were used.

View Article and Find Full Text PDF

Bacterial infections are a common cause of clinical complications associated with the use of orthodontic microimplants. Biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these medical devices. In order to improve the properties of microimplants, hybrid coatings enriched with silver nanoparticles, calcium, and phosphorus were investigated.

View Article and Find Full Text PDF

Magnetically Induced Anisotropic Microstructures on Polyethylene Glycol Hydrogel Facilitate BMSC Alignment and Osteogenic Differentiation.

Gels

December 2024

Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo 315211, China.

Many tissues exhibit structural anisotropy, which imparts orientation-specific properties and functions. However, recapitulating the cellular patterns found in anisotropic tissues presents a remarkable challenge, particularly when using soft and wet hydrogels. Herein, we develop self-assembled anisotropic magnetic FeO micropatterns on polyethylene glycol hydrogels utilizing dipole-dipole interactions.

View Article and Find Full Text PDF

The precise manipulation of PANoptosis, a newly defined cell death pathway encompassing pyroptosis, apoptosis, and necroptosis, is highly desired to achieve safer cancer immunotherapy with tumor-specific inflammatory responses and minimal side effects. Nonetheless, this objective remains a formidable challenge. Herein, an "AND" logic-gated strategy for accurately localized PANoptosis activation, utilizing composite 3D-printed bioactive glasses scaffolds integrated with epigenetic regulator-loaded porous piezoelectric SrTiO nanoparticles is proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!