Dye-containing wastewater discharge from the textile industry poses a serious pollution hazard that can be overcome by eliminating the washing step following the dyeing process. To study the washing-free printing of disperse dye ink, a number of water-borne polymers were selected and added to the ink, and the properties of the inks were discussed. By optimizing the ink formulation, printed fabrics with high color strength and color fastness were produced. The effects of the addition of polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), and polyethylene glycol (PEG) on the ink jetting performance and printing performance were intensively investigated. The migration-diffusion-fixation behavior of disperse dyes in inks on the polyester fiber was explored. The disperse dye ink with 0.075 wt.% PVA exhibited the strongest migration-diffusion effect. The PVA ink exhibited excellent jetting performance and printing color fastness, and the printing color strength was better than that of the PVP and PEG ink. The addition of PVA increased the difference between the solubility parameter of the disperse dyes and ink system, which improved the migration of disperse dyes from the ink system to the polyester fabric. Meanwhile, PVA could form a protective layer on printed fabrics because of its excellent film-forming properties at room temperature. The washing-free inkjet printing method developed in this study provides a theoretical basis for screening water-borne polymers and an environmentally friendly pathway for the printing of textiles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610862 | PMC |
http://dx.doi.org/10.3390/polym14204277 | DOI Listing |
Sci Rep
January 2025
Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
This report investigates the preparation, characterization, and application of activated carbon derived from Spathodea campanulata flowers (SCAC) to remove Congo Red (CR) dye from aqueous streams. SCAC was synthesized using orthophosphoric acid activation which yielded a mesoporous material with a specific surface area of (986.41 m/g), significantly exceeding values reported for flower-derived activated carbons in the available literature.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al Ahsa, 31982, Saudi Arabia.
The spent black tea extract was utilized in order to synthesize the spent black tea silver nanoparticles (SBT-AgNPs). Various parameters were tested to yield the best production of SBT-AgNPs. The characterization was conducted by X-Ray diffraction, Scanning electron microscopy, Zeta potential and energy dispersive X-ray (EDX).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
Designing molecular receptors that bind anions in water is a significant challenge, and an even greater difficulty lies in using these receptors to remove anions from water without resorting to the hazardous liquid-liquid extraction approach. We here demonstrate an effective and synthetically simple strategy toward these goals by exploiting ion-pair assembly of macrocycles. Our anion binding ensemble consists of an octa-chloro tetra-urea macrocyclic anion receptor (ClTU), which forms water-dispersible aggregates, and a tetra-cationic fluorescent dye 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin (TMPyP4), which provides Coulombic stabilization and fluorescence reporting of anion binding in an ion-pair assembly.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Pharmaceutical Science, Faculty of Pharmacy, Umm Al-Qura University, Makkah, P.O. Box 751, Saudi Arabia.
This study presents the synthesis and application of water-ball (sodium polyacrylate) stabilized zero-valent iron nanoparticles (wb@Fe) for the eco-friendly degradation of Methyl Orange (MO). The nanoparticles were prepared using a chemical reduction method using NaBH. Characterization techniques including Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), and X-ray Diffraction (XRD) were employed to analyze the morphology, elemental composition, valent state and crystallinity of the nanoparticles.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Career Point University, Hamirpur Campus, H.P., India; CNST, Career Point University, Hamirpur Campus, H.P., India. Electronic address:
In our study, we have tried to enhance the biological qualities of nickel oxide nanoparticles and nanocomposites which were prepared using the extract of Aegle marmelos tree leaves and chitosan biopolymer. For in-depth study of the fabricated samples, numerous physiochemical approaches were utilized. The analysis used consists of field emission scanning electron microscopy with energy dispersive X-ray analysis and photoluminescence, X-ray diffraction, UV-visible spectroscopy, and Fourier transform infrared spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!