Recent Advances in Functionalization of Cotton Fabrics with Nanotechnology.

Polymers (Basel)

Istituto per lo Studio dei Materiali Nano Strutturati, ISMN-CNR, Palermo, c/o Department of ChiBio FarAm, University of Messina, Viale F. Stagno d'Alcontres 31, Vill. S. Agata, 98166 Messina, Italy.

Published: October 2022

Nowadays, consumers understand that upgrading their traditional clothing can improve their lives. In a garment fabric, comfort and functional properties are the most important features that a wearer looks for. A variety of textile technologies are being developed to meet the needs of customers. In recent years, nanotechnology has become one of the most important areas of research. Nanotechnology's unique and useful characteristics have led to its rapid expansion in the textile industry. In the production of high-performance textiles, various finishing, coating, and manufacturing techniques are used to produce fibers or fabrics with nano sized (10) particles. Humans have been utilizing cotton for thousands of years, and it accounts for around 34% of all fiber production worldwide. The clothing industry, home textile industry, and healthcare industry all use it extensively. Nanotechnology can enhance cotton fabrics' properties, including antibacterial activity, self-cleaning, UV protection, etc. Research in the field of the functionalization of nanotechnology and their integration into cotton fabrics is presented in the present study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608714PMC
http://dx.doi.org/10.3390/polym14204273DOI Listing

Publication Analysis

Top Keywords

cotton fabrics
8
textile industry
8
advances functionalization
4
cotton
4
functionalization cotton
4
nanotechnology
4
fabrics nanotechnology
4
nanotechnology nowadays
4
nowadays consumers
4
consumers understand
4

Similar Publications

Industrialization of military textiles faces many challenges and some requirements such as durability, protection and suitability for hostile environment must be provided. Herein, fluorescent protective cotton with ultraviolet radiation (UVR)-protection and antimicrobial property was currently prepared via the immobilization of lanthanide-metal organic framework (Ln-MOF). Cotton fabrics were primarily activated via cationization process with 3-Chloro-2-hydroxypropyltrimethyl ammonium chloride to obtain the cationized cotton (Q-cotton).

View Article and Find Full Text PDF

Developing Chemical Signatures for Categories of Household Consumer Products Using Suspect Screening Analysis.

Environ Sci Technol

January 2025

Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States.

Consumer products are a major source of chemicals that may pose a health risk. It is important to understand what chemicals are in these products to evaluate risk and assess new products for uncommon ingredients. Suspect screening analysis (SSA) using two-dimensional gas chromatography-high-resolution-time-of-flight/mass spectrometry (GCxGC-HR-TOF/MS) was applied to 92 consumer products from 5 categories.

View Article and Find Full Text PDF

Eco-Friendly Fire-Retardant Coating on Cotton Using Layer by Layer Deposition Technique.

Molecules

December 2024

College of Mechatronic Engineering, Changwon National University, Changwon 51140, Gyeongsangnam-do, Republic of Korea.

Fire hazards are an increasing concern in several high-tech industries of public importance, particularly where textile fabrics are used in abundance. In this study, a novel layer by layer deposition method was utilized to develop a fire-retardant coating on cotton fabric. The method involves a hybrid cationic solution consisting of chitosan and branched polyethyleneimine, while bentonite clay was used as the anionic species.

View Article and Find Full Text PDF

1D moisture-enabled electric generators (MEGs) hold great promise for powering electronic textiles, but their current limitations in power output and operational duration restrict their application in wearable technology. This study introduces a high-performance yarn-based moisture-enabled electric generator (YMEG), which comprises a carbon-fiber core, a cotton yarn active layer with a radial gradient of poly(4-styrensulfonic acid) and poly(vinyl alcohol) (PSSA/PVA), and an aluminum wire as the outer electrode. The unique design maintains a persistent moisture gradient between the interior and exterior electrodes, enhancing performance through the continuous proton diffusion from PSSA and Al⁺ ions from the aluminum wire.

View Article and Find Full Text PDF

The cotton leafworm, Spodoptra littoralis, causes great damage to cotton crops. A new, safer method than insecticide is necessary for its control. Selenium nanoparticles (SeNPs) are metalloid nanomaterial, with extensive biological activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!