Kinetic and Isothermal Investigations on the Use of Low Cost Coconut Fiber-Polyaniline Composites for the Removal of Chromium from Wastewater.

Polymers (Basel)

Department of Maritime Science and Technology, Faculty of Defence Science and Technology, National Defence University of Malaysia, Kuala Lumpur 57000, Malaysia.

Published: October 2022

AI Article Synopsis

  • Pollution from heavy metals, particularly hexavalent chromium, poses serious environmental risks, necessitating the development of effective and low-cost removal methods.
  • This study explores the use of coconut fibers combined with polyaniline (PANI) to create a composite adsorbent, showing a maximum Cr(VI) removal efficiency of 93.11% within 30 minutes at an optimal pH of 4.
  • Kinetic analysis indicates that the adsorption follows the pseudo second order model and supports chemisorption, while isothermal studies suggest monolayer adsorption consistent with the Langmuir model.

Article Abstract

Pollution due to various heavy metals is increasing at an alarming rate. Removal of hexavalent chromium from the environment is a significant and challenging issue due to its toxic effects on the ecosystem. Development of a low-cost adsorbent with better adsorption efficiency is presently required. In this study, waste coconut fibers (CF) were used to prepare its composite with polyaniline (PANI) via in-situ oxidation. The obtained composites with varying loading of PANI (15, 25, 50, and 75% /) were characterized by FE-SEM, TGA, and FTIR spectroscopy. The prepared composites were evaluated for their adsorption performance for removal of Cr(VI). It was concluded that the composite with 50% / polyaniline loading on coconut fiber exhibited a maximum adsorption efficiency of 93.11% in 30 min. The effect of pH, dosage, and concentration of the aqueous solution of chromium on the Cr(VI) adsorption efficiency of the composite was also studied. From the optimization studies it was observed that the absorbents exhibited the best adsorption response for Cr(VI) removal with 0.25 mg/mL adsorbent at pH 4, in 30 min. The effect of pH, dosage, and concentration of the aqueous solution of chromium on the Cr(VI) adsorption efficiency of the composite was also studied. This study highlights the application of low-cost adsorbent as a potential candidate for the removal of hexavalent chromium. A detailed study on the adsorption kinetics and isothermal analysis was conducted for the removal of Cr(VI) from aqueous solution using coconut fiber-polyaniline composite. From the kinetic investigation, the adsorption was found to follow the pseudo second order model. The data obtained were best fitted to the Elovich model confirming the chemisorption of the Cr(VI) on coconut polymer composites. The analysis of the isothermal models indicated monolayer adsorption based on the Langmuir adsorption model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610989PMC
http://dx.doi.org/10.3390/polym14204264DOI Listing

Publication Analysis

Top Keywords

adsorption efficiency
16
aqueous solution
12
adsorption
10
coconut fiber-polyaniline
8
removal hexavalent
8
hexavalent chromium
8
low-cost adsorbent
8
removal crvi
8
min dosage
8
dosage concentration
8

Similar Publications

Adsorption properties and mechanisms of Cd by co-pyrolysis composite material derived from peanut biochar and tailing waste.

Environ Geochem Health

January 2025

College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.

Cadmium (Cd) contamination in aquatic systems is a widespread environmental issue. In this study, a solid waste iron tailings and biochar hybrid (Fe-TWBC) was successfully synthesized derived from co-pyrolysis of peanut shell and tailing waste (Fe-TW). Characterization analyses showed that the metal oxides from solid waste iron tailings successfully loaded onto the biochar surface, with more functional groups in Fe-TWBC.

View Article and Find Full Text PDF

Study of methylene blue removal and photocatalytic degradation on zirconia thin films modified with Mn-Anderson polyoxometalates.

Dalton Trans

January 2025

Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.

Recalcitrant pollutants are challenging to degrade during water treatment processes. Methylene blue (MB), a cationic dye, is particularly resistant to degradation and is environmentally persistent. Heterogeneous photocatalysis has emerged as a suitable strategy for removing such pollutants from water.

View Article and Find Full Text PDF

f-p-d Orbital Hybridization Promotes Hydroxyl Intermediate Adsorption for Electrochemical Biomolecular Oxidation and Identification.

Anal Chem

January 2025

Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P.R. China.

The rational design of efficient hydroxyl intermediate (*OH) adsorption catalysts for dopamine electrooxidation still faces a major challenge. To address this challenge, a CeO-loaded CuO catalyst inspired by the f-p-d orbital hybridization strategy is designed to achieve efficient *OH adsorption and improve dopamine oxidation. The experimental results and theoretical calculations demonstrate that the f-p-d orbital hybridization regulates the electron distribution at the Ce-O-Cu interface, which facilitates electron transfer and optimizes the adsorption of *OH, thereby promoting dopamine oxidation.

View Article and Find Full Text PDF

Selective Recycling of Mixed Polyesters via Heterogeneous Photothermal Catalysis.

Adv Mater

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China.

The selective recycling of mixed plastic wastes with similar structural units is challenging. While heterogeneous catalysis shows potential for selective recycling, challenges such as complex mass transfer at multiphase interfaces and unclear catalytic mechanisms have slowed progress. In this study, a breakthrough in recycling mixed polyester wastes is introduced using heterogeneous photothermal catalysis.

View Article and Find Full Text PDF

MIL-53(Al)-derived bimetallic Pd-Co catalysts for the selective hydrogenation of 1,3-butadiene at low temperature.

Sci Rep

January 2025

School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang, 261061, China.

Selective hydrogenation of 1,3-butadiene is a crucial industrial process for the removing of 1,3-butadiene, a byproduct of butene production. Developing catalysts with high catalytic performance for the hydrogenation of 1,3-butadiene at low temperatures has become a research hotspot. In this study, bimetallic Pd-Co catalysts supported on AlO derived from MIL-53(Al) at various calcination temperatures were synthesised via the co-impregnation method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!