Chitosan Oligosaccharide Prevents Afatinib-Induced Barrier Disruption and Chloride Secretion through Modulation of AMPK, PI3K/AKT, and ERK Signaling in T84 Cells.

Polymers (Basel)

Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan 10540, Thailand.

Published: October 2022

Diarrhea is an important adverse effect of epidermal growth factor receptor-tyrosine kinase inhibitors, especially afatinib. Novel antidiarrheal agents are needed to reduce epidermal growth factor receptor-tyrosine kinase inhibitor-associated diarrhea to improve the quality of life and treatment outcome in cancer patients. This study aimed to investigate the anti-diarrheal activity of chitosan oligosaccharide against afatinib-induced barrier disruption and chloride secretion in human intestinal epithelial cells (T84 cells). Chitosan oligosaccharide (100 μg/mL) prevented afatinib-induced barrier disruption determined by changes in transepithelial electrical resistance and FITC-dextran flux in the T84 cell monolayers. In addition, chitosan oligosaccharide prevented afatinib-induced potentiation of cAMP-induced chloride secretion measured by short-circuit current analyses in the T84 cell monolayers. Chitosan oligosaccharide induced the activation of AMPK, a positive regulator of epithelial tight junction and a negative regulator of cAMP-induced chloride secretion. Moreover, chitosan oligosaccharide partially reversed afatinib-induced AKT inhibition without affecting afatinib-induced ERK inhibition via AMPK-independent mechanisms. Collectively, this study reveals that chitosan oligosaccharide prevents the afatinib-induced diarrheal activities in T84 cells via both AMPK-dependent and AMPK-independent mechanisms. Chitosan oligosaccharide represents a promising natural polymer-derived compound for further development of treatment for afatinib-associated diarrheas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611671PMC
http://dx.doi.org/10.3390/polym14204255DOI Listing

Publication Analysis

Top Keywords

chitosan oligosaccharide
32
chloride secretion
16
afatinib-induced barrier
12
barrier disruption
12
t84 cells
12
chitosan
8
oligosaccharide prevents
8
prevents afatinib-induced
8
disruption chloride
8
epidermal growth
8

Similar Publications

Genipin crosslinked sodium caseinate-chitosan oligosaccharide nanoparticles for optimizing β-carotene stability and bioavailability.

Int J Biol Macromol

January 2025

Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China. Electronic address:

In this study, genipin served as crosslinker to combine sodium caseinate (SC) and chitosan oligosaccharide (COS), aiming to improve the physicochemical properties and encapsulation efficiency of SC in delivering hydrophobic nutritional factors. The genipin crosslinked complex of SC and COS (GSCC) was characterized by circular dichroism spectrum and infrared spectrum analyses. Nanoparticles produced from GSCC (GSCCNP) exhibited a superior hydrophilicity compared to those derived from SC (SCNP).

View Article and Find Full Text PDF

Layer-by-Layer (LbL) self-assembly encapsulation is a promising technology for the protection and delivery of lactic acid bacteria. However, laboratory-scale encapsulation is often time-consuming, involves intensive protocols tailored for small-scale operations, requires substantial amounts of energy and water, and results in a low yield of encapsulated biomass. Scaling-up this process to a bench-bioreactor scale is not simply a matter of increasing culture volume as different key parameters (not particularly relevant at lab scale) become critical, including biomass production, the number of polymer layers, and the biomass-to-polymer mass ratio.

View Article and Find Full Text PDF

Anti-inflammatory and antioxidant succinyl-chitosan oligosaccharide protects human epidermal cell and mouse skin against ultraviolet B-induced photodamage.

Carbohydr Polym

March 2025

Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China. Electronic address:

Ultraviolet B (UVB) irradiation from sunlight is one of the primary environmental factors that causes photodamage to the skin. The aim of this study was to prepare succinyl-chitosan oligosaccharide (SU-COS) and evaluate its protective effects and related molecular mechanisms against UVB-induced photodamage for the first time. SU-COS (substitution degree: 69.

View Article and Find Full Text PDF

Preparation, characterization and antibacterial investigation of water-soluble curcumin-chitooligosaccharide complexes.

Carbohydr Polym

March 2025

Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey. Electronic address:

Curcumin has a wide range of application prospects, with various bioactivities in the food industry and in the biomedical field. However, curcumin has poor water solubility and is sensitive to pH, light and temperature. In this study, curcumin-chitooligosaccharide (CUR-COS) complexes were prepared via mechanochemical methods, and the CUR-COS complex was more soluble after freeze-drying (up to 862-fold greater than that of curcumin).

View Article and Find Full Text PDF

Antimicrobial compounds of natural origin are of interest because of the large number of reports regarding the harmfulness of food preservatives. These natural products can be derived from plants, animal sources, microorganisms, algae, or mushrooms. The aim of this review is to consider known antimicrobials of natural origin and the mechanisms of their action, antimicrobial photodynamic technology, and ultrasound for disinfection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!