A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Coastal Wild Grapevine Accession ( L. ssp. ) Shows Distinct Late and Early Transcriptome Changes under Salt Stress in Comparison to Commercial Rootstock Richter 110. | LitMetric

Coastal Wild Grapevine Accession ( L. ssp. ) Shows Distinct Late and Early Transcriptome Changes under Salt Stress in Comparison to Commercial Rootstock Richter 110.

Plants (Basel)

CSIC-INIA(CBGP) Centro de Biotecnología y Genómica de Plantas, UPM-INIA, Parque Científico y Tecnológico de la UPM Campus de Montegancedo, CtraM-40, Km 38, Pozuelo de Alarcón, 28223 Madrid, Spain.

Published: October 2022

Increase in soil salinity, driven by climate change, is a widespread constrain for viticulture across several regions, including the Mediterranean basin. The implementation of salt-tolerant varieties is sought after to reduce the negative impact of salinity in grape production. An accession of wild grapevine ( L. ssp. ), named AS1B, found on the coastline of Asturias (Spain), could be of interest toward the achievement of salt-tolerant varieties, as it demonstrated the ability to survive and grow under high levels of salinity. In the present study, AS1B is compared against widely cultivated commercial rootstock Richter 110, regarding their survival capabilities, and transcriptomic profiles analysis allowed us to identify the genes by employing RNA-seq and gene ontology analyses under increasing salinity and validate (via RT-qPCR) seven salinity-stress-induced genes. The results suggest contrasting transcriptomic responses between AS1B and Richter 110. AS1B is more responsive to a milder increase in salinity and builds up specific mechanisms of tolerance over a sustained salt stress, while Richter 110 maintains a constitutive expression until high and prolonged saline inputs, when it mainly shows responses to osmotic stress. The genetic basis of AS1B's strategy to confront salinity could be valuable in cultivar breeding programs, to expand the current range of salt-tolerant rootstocks, aiming to improve the adaptation of viticulture against climate change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610063PMC
http://dx.doi.org/10.3390/plants11202688DOI Listing

Publication Analysis

Top Keywords

richter 110
16
wild grapevine
8
salt stress
8
commercial rootstock
8
rootstock richter
8
climate change
8
salt-tolerant varieties
8
salinity
6
coastal wild
4
grapevine accession
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!