An 8-week feeding trial was conducted, where turbot were fed four experimental diets, containing different LPC levels (0%, 0.1%, 0.25%, and 0.5%, named LPC0, LPC0.1, LPC0.25, and LPC0.5, respectively). The intestinal morphology results showed that there were no widened lamina propria and mixed inflammatory cells in the LPC-supplemented groups. Dietary LPC remarkably decreased the expression of TLRs (TLR3, TLR8, TLR9, and TLR22), MyD88, and signaling molecules (NF-κB, JNK, and AP-1). Similarly, diets with LPC supplementation markedly depressed the gene expression of NF-κB and JNK signaling pathway downstream genes (TNF-α, IL-1β, Bax, Caspase9, and Caspase-3). Furthermore, dietary LPC modified the intestinal microbial profiles, increasing the relative abundance of short-chain fatty acids-producers, lactic acid bacteria, and digestive enzyme-producing bacteria. Predictive functions of intestinal microbiota showed that turbot fed LPC diets had a relatively higher abundance of functions, such as lipid metabolism and immune system, but a lower abundance of functions, such as metabolic diseases and immune system diseases. The activities of intestinal acid phosphatase and alkaline phosphatase were also increased by dietary LPC. In conclusion, LPC supplementation could regulate the intestinal mucosal barrier via the TLR signaling pathway and alter the intestinal microbiota profile of turbot fed high-lipid diets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611283 | PMC |
http://dx.doi.org/10.3390/nu14204398 | DOI Listing |
Sci Rep
December 2024
Weifang University of Science and Technology, Jinguang Road No. 1299, Weifang City, Shandong Province, China.
Butyrate is one of the most abundant short-chain fatty acids (SCFAs), which are important metabolites of dietary fiber by fermentation of gut commensals, and has been shown to be vital in maintaining host health. The present study mainly investigated how sodium butyrate (NaB) supplementation in the diet with high proportion of soybean meal (SBM) affected turbot. Four experimental diets were formulated: (1) fish meal (FM) based diet (control group), (2) SBM protein replacing 45% FM protein in the diet (high SBM group), (3) 0.
View Article and Find Full Text PDFFish Shellfish Immunol
November 2024
The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China. Electronic address:
Fish Physiol Biochem
December 2024
Department of Aquaculture, Faculty of Fisheries, Çukurova University, 01330, Balcalı, Adana, Turkey.
Expansion of economically viable turbot (Scophthalmus maximus) aquaculture depends on access to brackish-cold ground water sources in various parts of the world. Since brackish water sources can adversely affect the physiology and zoo technical performance of fish due to the burden of osmoregulation, dietary salt inclusion can alleviate the negative impacts of low-saline waters in several aquaculture species. This study investigated the effects of increasing dietary salt levels on the growth, feed utilization, body composition, and tissue fatty acid composition of juvenile turbot (initial live weight 120.
View Article and Find Full Text PDFAnim Nutr
September 2024
Marine College, Shandong University, Weihai, Shandong, China.
protein (CAP) is a promising protein source for aquaculture; however, how CAP influences fish quality is worth extensive research. We randomly allocated 630 turbot with initial body weights of about 180 g into 6 groups, with fishmeal-based control diet or diet with CAP replacing 15% (CAP15), 30% (CAP30), 45% (CAP45), 60% (CAP60), or 75% (CAP75) of fishmeal protein. After a 70-d feeding trial, the fillet yield ( = 0.
View Article and Find Full Text PDFSurveillance data published since 2010, although limited, showed that there is no evidence of zoonotic parasite infection in market quality Atlantic salmon, marine rainbow trout, gilthead seabream, turbot, meagre, Atlantic halibut, common carp and European catfish. No studies were found for greater amberjack, brown trout, African catfish, European eel and pikeperch. , (s.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!