The impact of a titania (TiO) support film surface on the catalytic activity of gold nanoparticles (Au NP) was investigated. Using the reactive dc-magnetron sputtering technique, TiO films with an amorphous, anatase, and nitrogen-doped anatase crystal structure were produced for a subsequent role as a support material for Au NP. Raman spectra of these TiO films revealed that both vacuum and NH annealing treatments promoted amorphous to anatase phase transformation through the presence of a peak in the 513-519 cm spectral regime. Furthermore, annealing under NH flux had an associated blue shift and broadening of the Raman active mode at 1430 cm, characteristic of an increase in the oxygen vacancies (). For a 3 to 15 s sputter deposition time, the Au NP over TiO support films were in the 6.7-17.1 nm size range. From X-ray photoelectron spectroscope (XPS) analysis, the absence of any shift in the Au 4f core level peak implied that there was no change in the electronic properties of Au NP. On the other hand, spontaneous hydroxyl (-OH) group adsorption to anatase TiO support was instantly detected, the magnitude of which was found to be enhanced upon increasing the Au NP loading. Nitrogen-doped anatase TiO supporting Au NP with ~21.8 nm exhibited a greater extent of molecular oxygen adsorption. The adsorption of both -OH and O species is believed to take place at the perimeter sites of the Au NP interfacing with the TiO film. XPS analyses and discussions about the tentative roles of O and -OH adsorbent species toward Au/TiO systems corroborate very well with interpretations of density functional theory simulations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609015 | PMC |
http://dx.doi.org/10.3390/nano12203692 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
Carbon fiber (CF) has been widely used in aerospace, military, infrastructure, sports, and leisure fields owing to its excellent mechanical properties, superior corrosion and friction resistances, excellent thermal stability, and lightweight. However, the ultrablack appearance derived from the extremely strong absorption of light throughout the entire visible region makes it difficult to satisfy the aesthetic and pleasurable demands of the colorful world and limits their applications in a broader field. Herein, inspired by the , a double-layer ultrathin AlO/TiO composite structure was fabricated on CFs by the atomic layer deposition method.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Guangdong Key Laboratory of Materials and Equipment in Harsh Marine Environment, School of Ocean Engineering, Guangzhou Maritime University, Guangzhou 510725, China.
Metal oxide semiconductor (MOS) hydrogen sensors offer advantages, such as high sensitivity and fast response, but their challenges remain in achieving low-cost fabrication and stable operation at room temperature. This study investigates Nb-doped TiO (NTO) thin films prepared via a one-step micro-arc oxidation (MAO) with the addition of NbO nanoparticles into the electrolyte for room-temperature hydrogen sensing. The characterization results revealed that the incorporation of NbO altered the film's morphology and phase composition, increasing the Nb content and forming a homogeneous composite thin film.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Environmental Engineering, University of Calabria, 87036 Rende, Italy.
In this study, TiO-P25 films on FTO substrates were synthesized using the sol-gel process and studied using Variable Angle Spectroscopy Ellipsometry (VASE) to determine their optical constants and thickness. The measurements were carried out at room temperature in the wavelength range of (300-900) nm at incident angles varying from 55° to 70°. The resulting thicknesses were found to be around 1000 nm.
View Article and Find Full Text PDFLangmuir
January 2025
Chemistry and Structure of novel Materials, University of Siegen, Paul-Bonatz Strasse 9-11, 57068 Siegen, Germany.
The surface charge of metal oxides is an important property that significantly contributes to a wide range of phenomena, including adsorption, catalysis, and material science. The surface charge can be predicted by determining the isoelectric point (IEP) of a material and the pH of a solution. Although there have been several studies of the IEP of metal oxide (nano)particles, only a few have reported the IEP of metal oxide films.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Engineering, Anhui Science and Technology University, Chuzhou, 233100, PR China.
In the present study, with oregano essential oil (OEO) as the active ingredient and polyvinyl alcohol/citric acid (PVA/CA) as the composite matrix, ultraviolet (UV) responded PVA bio-active films incorporated with microcapsules, which were established by chitosan-incorporated titanium dioxide (TiO), were constructed. The UV light-triggered process changed the structure of films, including the degradation of PVA, the fracture of ester bonds and the breaking of glycosidic bonds. UV irradiation reduced the elongation at break, increased the light resistance ability, the surface hydrophobicity and the roughness, and accelerated the release of OEO in films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!