A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

From Structure to Function: Understanding Synthetic Conditions in Relation to Magnetic Properties of Hybrid Pd/Fe-Oxide Nanoparticles. | LitMetric

Heterostructured magnetic nanoparticles show great potential for numerous applications in biomedicine due to their ability to express multiple functionalities in a single structure. Magnetic properties are generally determined by the morphological characteristics of nanoparticles, such as the size/shape, and composition of the nanocrystals. These in turn are highly dependent on the synthetic conditions applied. Additionally, incorporation of a non-magnetic heterometal influences the final magnetic behavior. Therefore, construction of multifunctional hybrid nanoparticles with preserved magnetic properties represents a certain nanotechnological challenge. Here, we focus on palladium/iron oxide nanoparticles designed for combined brachytherapy, the internal form of radiotherapy, and MRI-guided hyperthermia of tumors. The choice of palladium forming the nanoparticle core is envisioned for the eventual radiolabeling with Pd to enable the combination of hyperthermia with brachytherapy, the latter being beyond the scope of the present study. At this stage, we investigated the synthetic mechanisms and their effects on the final magnetic properties of the hybrid nanoparticles. Thermal decomposition was applied for the synthesis of Pd/Fe-oxide nanoparticles via both, one-pot and seed-mediated processes. The latter method was found to provide better control over morphology of the nanoparticles and was therefore examined closely by varying reaction conditions. This resulted in several batches of Pd/Fe-oxide nanoparticles, whose magnetic properties were evaluated, revealing the most relevant synthetic parameters leading to promising performance in hyperthermia and MRI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612236PMC
http://dx.doi.org/10.3390/nano12203649DOI Listing

Publication Analysis

Top Keywords

magnetic properties
20
pd/fe-oxide nanoparticles
12
nanoparticles
9
synthetic conditions
8
properties hybrid
8
final magnetic
8
hybrid nanoparticles
8
magnetic
7
properties
5
structure function
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!