Enantiomerically enriched cyclopropyl ethers, amines, and cyclopropylazole derivatives possessing three stereogenic carbon atoms in a small cycle are obtained via the diastereoselective, formal nucleophilic substitution of chiral, non-racemic bromocyclopropanes. The key feature of this methodology is the utilization of the chiral center of the cyclopropene intermediate, which governs the configuration of the two adjacent stereocenters that are successively installed via 1,4-addition/epimerization sequence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609026 | PMC |
http://dx.doi.org/10.3390/molecules27207069 | DOI Listing |
Sci Bull (Beijing)
December 2024
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:
Divergent synthesis of valuable molecules through common starting materials and metal catalysis represents a longstanding challenge and a significant research goal. We here describe chemodivergent, highly enantio- and regioselective nickel-catalyzed reductive and dehydrogenative coupling reactions of alkynes, aldehydes, and silanes. A single chiral Ni-based catalyst is leveraged to directly prepare three distinct enantioenriched products (silyl-protected trisubstituted chiral allylic alcohols, oxasilacyclopentenes, and silicon-stereogenic oxasilacyclopentenes) in a single chemical operation.
View Article and Find Full Text PDFACS Nano
January 2025
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China.
Helical structures such as right-handed double helix for DNA and left-handed α-helix for proteins in biological systems are inherently chiral. Importantly, chirality at the nanoscopic level plays a vital role in their macroscopic chiral functionalities. In order to mimic the structures and functions of natural chiral nanoarchitectures, a variety of chiral nanostructures obtained from artificial helical polymers are prepared, which can be directly observed by atomic force microscopy (AFM), scanning tunneling microscopy (STM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM).
View Article and Find Full Text PDFNat Commun
January 2025
The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China.
Optically pure 1,2-diols and 1,3-diols are the most privileged structural motifs, widely present in natural products, pharmaceuticals and chiral auxiliaries or ligands. However, their synthesis relies on the use of toxic or expensive metal catalysts or suffer from low regioselectivity. Catalytic asymmetric synthesis of optically pure 1,n-diols from bulk chemicals in a highly stereoselective and atom-economical manner remains a formidable challenge.
View Article and Find Full Text PDFBiomed Chromatogr
February 2025
Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India.
Enantioseparation and enantiorecognition are crucial in the pharmaceutical analysis of chiral substances, impacting safety, efficacy, and regulatory compliance. Enantioseparation refers to the process of separating enantiomers from a mixture, typically achieved through chromatography techniques like HPLC and SFC. In contrast, enantiorecognition involves the identification of enantiomers based on their interaction with a chiral selector without the need for separation.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory for Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
The preparation of single-crystal polymers with circularly polarized luminesce (CPL) remains a challenging task in chemistry and materials science. Herein, we present the single-crystal-to-single-crystal topochemical photopolymerization of a chiral organic salt to achieve this goal. The in-situ reaction of 1,4-bis((E)-2-(pyridin-4-yl)vinyl)benzene (1) with chiral (+)- or (-)-camphorsulfonic acid (CSA) gives the monomer crystal 1[( + )/( - )-CSA] showing yellow CPL with a high luminescent dissymmetry factor |g| of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!