Our study used the full-potential linearized augmented plane waves (FP-LAPW) method to conduct a first-principles evaluation of the structural, electronic, and magnetic properties of ThMnX (X = Si and Ge) compounds. To establish theoretical dependability with the currently available experimental results, computations for the structural findings of ternary intermetallic thorium (Th)-based compounds were achieved using the generalized gradient approximation in the scheme of Perdew-Burke-Ernzerhof (PBE-GGA) potential, while the generalized gradient approximation plus the Hubbard U (GGA + U) approach was employed to improve the electrical and magnetic properties. In contrast with both the paramagnetic (PM) and antiferromagnetic (AFM) phases, the ThMnX compounds were optimized in a stable ferromagnetic (FM) phase, which was more suited for studying and analyzing magnetic properties. The electronic band structures (BS) and the density of state (DOS) were computed using the two PBE-GGA and GGA + U approximations. The thorium (Th)-based ThMnX compound has full metallic character, due to the crossing and overlapping of bands across the Fermi level of energy, as well as the absence of a gap through both spin (up and down) channels. There was a significant hybridization between (Mn- and (X = Si and Ge)- states of conduction band with Th- states in the valence band. The total magnetic moment of ThMnSi in the ferromagnetic phase was 7.94534 μB, while for ThMnGe it was 8.73824 μB with a major contribution from the Mn atom. In addition, the ThMnGe compound's total magnetic moment confirmed that it exhibits higher ferromagnetism than does the ThMnSi compound.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609203PMC
http://dx.doi.org/10.3390/molecules27207070DOI Listing

Publication Analysis

Top Keywords

ferromagnetic phase
12
magnetic properties
12
thmnx compounds
8
thorium th-based
8
generalized gradient
8
gradient approximation
8
total magnetic
8
magnetic moment
8
magnetic
5
gga gga
4

Similar Publications

This study investigates the chemical, physical, and magnetic properties of Mn-Al-C type magnets, focusing on their corrosion resistance. The hot compaction process is used for densification, producing isotropic magnets. Microstructural analysis reveals undesirable features, such as phase decomposition and deformation.

View Article and Find Full Text PDF

investigation of layered TMGeTe alloys for phase-change applications.

Nanoscale

January 2025

Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.

Chalcogenide phase-change materials (PCMs) are among the most mature candidates for next-generation memory technology. Recently, CrGeTe (CrGT) emerged as a promising PCM due to its enhanced amorphous stability and fast crystallization for embedded memory applications. The amorphous stability of CrGT was attributed to the complex layered structure of the crystalline motifs needed to initiate crystallization.

View Article and Find Full Text PDF

Spin transport properties in a topological insulator sandwiched between two-dimensional magnetic layers.

Sci Rep

January 2025

Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691, Stockholm, Sweden.

Non-trivial band topology along with magnetism leads to different novel quantum phases. When time-reversal symmetry is broken in three-dimensional topological insulators (TIs) through, e.g.

View Article and Find Full Text PDF

Magnetic semiconductors with spin-polarized non-metallic atoms are usually overlooked in applications because of their poor performances in magnetic moments and under critical temperatures. Herein, magnetic characteristics of 2D pentagon-based XN (X = B, Al, and Ga) are revealed based on first-principles calculations. It was proven that XN structures are antiferromagnetic semiconductors with bandgaps of 2.

View Article and Find Full Text PDF

To analyze the motion laws of a magnetic and elastic coupling system under the influence of various factors, this paper proposes a magnetic coupling pendulum based on spring pieces and magnets-a magnetic-mechanical oscillator. By fixing spring pieces onto two non-magnetic bases and attaching magnets to their upper ends, which repel each other, the potential energy during oscillation is expanded using Fourier series. Subsequently, Lagrange equations are solved to study the effects of the first two terms of potential energy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!