The study of new materials for radiation dosimetry is important to improve the present state of the art and to help in cases of accidents for retrospective dosimetry. Sulfites are compounds that contain a sulfur ion, widely used in the food industry. Due to the significant application of these compounds, sulfites are interesting candidates for accidental dosimetry, as fortuitous radiation detectors. The presence of the SO anion enables its detection by electron spin resonance (ESR) spectroscopy. The Dose-Response behavior, signal stability and other spectral features were investigated for sodium sulfite, sodium bisulfite, sodium metabisulfite and potassium metabisulfite, all in crystalline forms. The ESR spectrum of salts presented stability and proportional response with dose, presenting potential for dosimetry applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611582 | PMC |
http://dx.doi.org/10.3390/molecules27207047 | DOI Listing |
J Chem Theory Comput
January 2025
State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China.
With the advancement of high harmonic generation and X-ray free-electron lasers (XFELs) to the attosecond domain, the studies of the ultrafast electron and spin dynamics became possible. Yet, the methods for efficient control and measurement of the quantum state are to be further developed. In this publication, we propose using magnetic X-ray scattering (MXS) for resolving the molecular spin-state dynamics and establish a complete protocol to simulate MXS diffraction patterns in molecules with ab initio quantum chemistry based on the multiconfigurational method.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
Interstitial quasi-atomic electrons (IQEs) in the quantized energy levels of positively charged cavities possess a substantial own magnetic moment and control the magnetism of crystalline electrides depending on the interaction with surrounding cations. However, weak spin-orbit coupling and gentle exchange interaction restricted by the IQEs preclude a large magnetic anisotropic, remaining a challenge for a hard magnetism. It is reported that 2D [ReC]·2e electrides (Re = Er, Ho, Dy, and Tb) show the permanent magnetism in a ferrimagnetic ground state, mimicking the ferrites composed of magnetic sublattices with different spin polarizations.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, Seoul National University, Seoul 151-747, South Korea.
ConspectusWhile traditional quantum chemical theories have long been central to research, they encounter limitations when applied to complex situations. Two of the most widely used quantum chemical approaches, Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TDDFT), perform well in cases with relatively weak electron correlation, such as the ground-state minima of closed-shell systems (Franck-Condon region). However, their applicability diminishes in more demanding scenarios.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
Anion dimerization poses a significant challenge for the application of Li-rich cathode materials (LCMs) in high-energy-density Li-ion batteries because of its deleterious effects, including rapid capacity and voltage decay, sluggish reaction kinetics, and large voltage hysteresis. Herein, we propose a metal-ligand spin-lock strategy to inhibit anion dimerization, which involves introducing an Fe-Ni couple having antiferromagnetic superexchange interaction into the LCM to lock the spin orientations of the unpaired electrons in the anions in the same direction. As proof of concept, we applied this strategy to intralayer disordered LiTiS (ID-LTS) to inhibit S-S dimerization.
View Article and Find Full Text PDFEnviron Res
December 2024
Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea. Electronic address:
Peroxydisulfate (PDS) activation is a crucial process for wastewater treatment in complicated water matrices. However, it is frequently limited because of poor selectivity, sluggish kinetics, and short lifetime of radicals. Therefore, in this study, an efficient sulfur-doped CN/DyFeO (SCN/DyF) Z-scheme heterostructure catalyst was rationally developed using a simple wet-chemical strategy to photoactivate PDS, which can effectively degrade norfloxacin (NOR; 96.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!