The research for alternative administration methods for anticancer drugs, towards enhanced effectiveness and selectivity, represents a major challenge for the scientific community. In the last decade, polymeric nanostructured delivery systems represented a promising alternative to conventional drug administration since they ensure secure transport to the selected target, providing active compounds protection against elimination, while minimizing drug toxicity to non-target cells. In the present research, poly(glycerol sebacate), a biocompatible polymer, was synthesized and then nanostructured to allow curcumin encapsulation, a naturally occurring polyphenolic phytochemical isolated from the powdered rhizome of L. Curcumin was selected as an anticancer agent in virtue of its strong chemotherapeutic activity against different cancer types combined with good cytocompatibility within healthy cells. Despite its strong and fascinating biological activity, its possible exploitation as a novel chemotherapeutic has been hampered by its low water solubility, which results in poor absorption and low bioavailability upon oral administration. Hence, its encapsulation within nanoparticles may overcome such issues. Nanoparticles obtained through nanoprecipitation, an easy and scalable technique, were characterized in terms of size and stability over time using dynamic light scattering and transmission electron microscopy, confirming their nanosized dimensions and spherical shape. Finally, biological investigation demonstrated an enhanced cytotoxic effect of curcumin-loaded PGS-NPs on human cervical cancer cells compared to free curcumin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606863 | PMC |
http://dx.doi.org/10.3390/molecules27206997 | DOI Listing |
Drug Deliv Transl Res
December 2024
Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX, 77030, USA.
Poly(glycerol sebacate) (PGS) is a biodegradable, elastomeric polymer that has been explored for applications including tissue engineering, drug delivery, and wound repair. Despite its promise, its biomedical utility is limited by its rapid, and largely fixed, degradation rate. Additionally, its preparation requires prolonged curing at high temperatures, rendering it incompatible with heat-sensitive molecules, complex device geometries, and high-throughput production.
View Article and Find Full Text PDFPolim Med
December 2024
Department of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland.
Background: Poly(glycerol sebacate) is a polymeric material with potential biomedical application in the field of tissue engineering. In order to act as a biodegradable scaffold, its incubation study is vital to simulate its behavior.
Objectives: This study explores the degradation of porous poly(glycerol sebacate)/hydroxyapatite scaffolds subjected to incubation in various physiological solutions.
Biomater Sci
November 2024
Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
The myotendinous junction (MTJ) facilitates force transmission between muscle and tendon to produce joint movement. The complex microarchitecture and regional mechanical heterogeneity of the myotendinous junction pose major challenges in creating this interface . Engineering this junction is challenging due to substantial fabrication difficulties in creating scaffolds with intricate microarchitecture and stiffness heterogeneity to mimic the native muscle-tendon interface.
View Article and Find Full Text PDFBioact Mater
January 2025
Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
The osteoporotic bone defect caused by excessive activity of osteoclasts has posed a challenge for public healthcare. However, most existing bioinert bone cement fails to effectively regulate the pathological bone microenvironment and reconstruct bone homeostasis in the presence of osteoclast overactivity and osteoblast suppression. Herein, inspired by natural bone tissue, an in-situ modulation system for osteoporotic bone regeneration is developed by fabricating an injectable double-crosslinked PEGylated poly(glycerol sebacate) (PEGS)/calcium phosphate cement (CPC) loaded with sodium alendronate (ALN) (PEGS/CPC@ALN) adhesive bone cement.
View Article and Find Full Text PDFHeliyon
October 2024
Department of Biomaterials, Nano Technology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
The aim of this research was to fabricate and evaluate polyglycerol sebacate/polycaprolactone/reduced graphene oxide (PGS-PCL-RGO) composite scaffolds for myocardial tissue engineering. Polyglycerol sebacate polymer was synthesized using glycerol and sebacic acid prepolymers, confirmed by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Six PGS-PCL-RGO composite scaffolds (S-S) with various weight ratios were prepared in chloroform (CF) and acetone (Ace) solvents at 8 CF:2Ace and 9 CF:1Ace volume ratios, using the electrospinning method at a rate of 1 ml/h and a voltage of 18 kV.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!