Energy Crops and Methane: Process Optimization of Ca(OH) Assisted Thermal Pretreatment and Modeling of Methane Production.

Molecules

Department of Agricultural Machinery and Technology Engineering, Faculty of Agriculture, Akdeniz University, Antalya 07058, Turkey.

Published: October 2022

Switchgrass earned its place globally as a significant energy crop by possessing essential properties such as being able to control erosion, low cost of production, biomass richness, and appeal for biofuel production. In this study, the impact of a Ca(OH)-assisted thermal pretreatment process on the switchgrass variety Shawnee for methane fuel production was investigated. The Ca(OH)-assisted thermal pretreatment process was optimized to enhance the methane production potential of switchgrass. Solid loading (3-7%), Ca(OH) concentration (0-2%), reaction temperature (50-100 °C), and reaction time (6-16 h) were selected as independent variables for the optimization. Methane production was obtained as 248.7 mL CH gVS under the optimized pretreatment conditions. Specifically, a reaction temperature of 100 °C, a reaction time of 6 h, 0% Ca(OH), and 3% solid loading. Compared to raw switchgrass, methane production was enhanced by 14.5%. Additionally, the changes in surface properties and bond structure, along with the kinetic parameters from first order, cone, reaction curve, and modified Gompertz modeling revealed the importance of optimization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9607449PMC
http://dx.doi.org/10.3390/molecules27206891DOI Listing

Publication Analysis

Top Keywords

methane production
16
thermal pretreatment
12
caoh-assisted thermal
8
pretreatment process
8
solid loading
8
reaction temperature
8
°c reaction
8
reaction time
8
production
7
methane
6

Similar Publications

Copper-Catalysed Electrochemical CO2 Methanation via the Alloying of Single Cobalt Atoms.

Angew Chem Int Ed Engl

January 2025

UESTC: University of Electronic Science and Technology of China, School of Materials and Energy, Chengdu, Sichuan, 611731, Chengdu, CHINA.

The electrochemical reduction of carbon dioxide (CO2) to methane (CH4) presents a promising solution for mitigating CO2 emissions while producing valuable chemical feedstocks. Although single-atom catalysts have shown potential in selectively converting CO2 to CH4, their limited active sites often hinder the realization of high current densities, posing a selectivity-activity dilemma. In this study, we developed a single-atom cobalt (Co) doped copper catalyst (Co1Cu) that achieved a CH4 Faradaic efficiency exceeding 60% with a partial current density of -482.

View Article and Find Full Text PDF

Interfacial Metal Oxides Stabilize Cu Oxidation States for Electrocatalytical CO2 Reduction.

ChemSusChem

January 2025

University of Electronic Science and Technology of China, School of Material and Energy, Qingshuihe Campus:No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, CHINA.

Modulating the oxidation state of copper (Cu) is crucial for enhancing the electrocatalytic CO2 reduction reaction (CO2RR), particularly for facilitating deep reductions to produce methane (CH4) or multi-carbon (C2+) products. However, Cuδ+ sites are thermodynamically unstable, fluctuating their oxidation states under reaction conditions, which complicates their functionality. Incorporating interfacial metal oxides has emerged as an effective strategy for stabilizing these oxidation states.

View Article and Find Full Text PDF

A study was conducted to assess growth performance, methane (CH) emissions, and feeding behavior of feedlot steers consuming backgrounding and finishing diets with an essential oil blend (EO), monensin (Mon), and their combination (EO + Mon). The study was structured as a 2 × 2 factorial, with two feed additive treatments (Control, EO) and two monensin treatments (no Monensin, Monensin). One hundred Angus × steers were evenly distributed across each treatment into four pens, and each dietary phase consisted of four, 28-d periods.

View Article and Find Full Text PDF

The conversion of diluted CO₂ into high-energy fuels is increasingly central to renewable energy research. This study investigates the efficacy of a Gd₂NiMnO₆ dendritic nanofibrous (DNF) photocatalyst in transforming carbon dioxide to methane through photoreduction. Gd₂NiMnO₆ DNF was found to provide active adsorption sites and control the strand dimensions for metal groups, facilitating the chemical absorption of CO₂.

View Article and Find Full Text PDF

Hydroxy radical (•OH) is a prestigious oxidant that allows the cleavage of strong chemical bonds of methane but is untamed, leading to over-oxidation of methane and waste of oxidants, especially at high methane conversion. Here, we managed to buffer •OH in an aqueous solution of photo-irradiated Fe3+, where •OH almost participates in methane oxidation. Due to the interaction between Fe3+ and SO42-, the electron transfer from OH- to excited-state Fe3+ for •OH generation is retarded, while excessive •OH is consumed by generated Fe2+ to restore Fe3+.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!