Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fungal communities form close beneficial (mutualists) or detrimental (pathogens) associations with their plant hosts. Their diversity and abundance can be affected by agricultural practices which include cropping systems such as rotations and intercropping. Despite the importance of cropping systems in increasing productivity, knowledge of the fungal mycobiome and the core inhabitants for under-utilised cereal and legume crops, particularly over a period, is still limited. The core mycobiomes in plant tissues and bulk soils of a cereal-legume intercrop were characterized over two years using high-throughput sequencing. The intercropping trial consisted of sorghum, Bambara groundnut, cowpea, dry bean, and soybean. A greater number of molecular operational taxonomic units (MOTUs) were found in plant tissues compared to those from the soils and between year one and year two. Principal coordinate analyses revealed that fungal communities for each year were relatively distinct, particularly for the soils. The core mycobiome was dominated by a Davidiellaceae sp. (), Didymellaceae sp. 1 (), Didymellaceae sp. 2 (), sp. 2, Unidentified (Ascomycota), and MOTUs that were present in all plant tissues and soils of year one and two. Other key MOTUs were only specific to a year, substrate, or crop. Although the mycobiome of sorghum were more distinct than the cores of the legumes, there were still MOTUs dominant across all of the crops. Characterization of this baseline core across two years provides insight into those fungi that are always present in these crops, and that could be utilized in improving crop performance and productivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611730 | PMC |
http://dx.doi.org/10.3390/microorganisms10102079 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!