The intensive and extensive broiler production systems imply different veterinary interventions, including the use of antimicrobials. This study aimed to compare the antimicrobial susceptibility profiles of isolated from both systems, characterize resistance mechanisms to β-lactams and polymyxins, and identify genetic elements such as integrons. isolates recovered from broiler cecal samples were assayed for antimicrobial susceptibility through the broth microdilution technique. The molecular characterization of acquired resistance mechanisms to β-lactams and colistin and the detection of integrons was performed by a multiplex PCR. For most antibiotics tested, the prevalence of reduced susceptibility is higher in commensal and extended-spectrum β-lactamases (ESBL)/AmpC producers from broilers raised in the intensive system, compared with those raised under extensive conditions. SHV-12 was the most common ESBL enzyme found in both production systems. Other ESBL variants such as CTX-M-1, CTX-M-55, CTX-M-14, CTX-M-32, CTX-M-9, TEM-52, and plasmid-encoded AmpC enzyme CMY-2 were also present. MCR-1 was identified in a colistin-resistant isolate from broilers raised under the intensive system. This study highlights the differences in antibiotic susceptibility from both production types and emphasizes that a great deal of work remains to decrease consumption and antimicrobial resistance levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608943PMC
http://dx.doi.org/10.3390/microorganisms10102044DOI Listing

Publication Analysis

Top Keywords

resistance mechanisms
12
mechanisms β-lactams
12
broilers raised
12
raised intensive
12
production systems
12
antibiotic susceptibility
8
susceptibility profiles
8
β-lactams polymyxins
8
intensive extensive
8
antimicrobial susceptibility
8

Similar Publications

This review discusses multiple aspects of follicular lymphoma (FL), including etiology, treatment challenges, and future perspectives. First, we delve into the etiology of FL, which involves a variety of pathogenic mechanisms such as gene mutations, chromosomal abnormalities, immune escape, immune system dysregulation, familial inheritance, and environmental factors. These mechanisms provide the context for understanding the diversity and complexity of FL.

View Article and Find Full Text PDF

Animals alter their behavior in response to changes in the environment. Upon encountering hyperosmotic conditions, the nematode worm initiates avoidance and cessation of egg-laying behavior. While the sensory pathway for osmotic avoidance is well-understood, less is known about how egg laying is inhibited.

View Article and Find Full Text PDF

Amplified by the decline in antibiotic discovery, the rise of antibiotic resistance has become a significant global challenge in infectious disease control. Extraintestinal (ExPEC), known to be the most common instigators of urinary tract infections (UTIs), represent such global threat. Novel strategies for more efficient treatments are therefore desperately needed.

View Article and Find Full Text PDF

Cancer cells within tumors exhibit a wide range of phenotypic states driven by non-genetic mechanisms in addition to extensively studied genetic alterations. Conversions among cancer cell states can result in intratumoral heterogeneity which contributes to metastasis and development of drug resistance. However, mechanisms underlying the initiation and/or maintenance of such phenotypic plasticity are poorly understood.

View Article and Find Full Text PDF

In p53-deficient cancers, targeting cholesterol metabolism has emerged as a promising therapeutic approach, given that p53 loss dysregulates sterol regulatory element-binding protein 2 (SREBP-2) pathways, thereby enhancing cholesterol biosynthesis. While cholesterol synthesis inhibitors such as statins have shown initial success, their efficacy is often compromised by the development of acquired resistance. Consequently, new strategies are being explored to disrupt cholesterol homeostasis more comprehensively by inhibiting its synthesis and intracellular transport.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!