Adaptive Feature Extraction for Blood Vessel Segmentation and Contrast Recalculation in Laser Speckle Contrast Imaging.

Micromachines (Basel)

Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Santa Maria Tonantzintla, San Andres Cholula 72840, Mexico.

Published: October 2022

Microvasculature analysis in biomedical images is essential in the medical area to evaluate diseases by extracting properties of blood vessels, such as relative blood flow or morphological measurements such as diameter. Given the advantages of Laser Speckle Contrast Imaging (LSCI), several studies have aimed to reduce inherent noise to distinguish between tissue and blood vessels at higher depths. These studies have shown that computing Contrast Images (CIs) with Analysis Windows (AWs) larger than standard sizes obtains better statistical estimators. The main issue is that larger samples combine pixels of microvasculature with tissue regions, reducing the spatial resolution of the CI. This work proposes using adaptive AWs of variable size and shape to calculate the features required to train a segmentation model that discriminates between blood vessels and tissue in LSCI. The obtained results show that it is possible to improve segmentation rates of blood vessels up to 45% in high depths (≈900 μm) by extracting features adaptively. The main contribution of this work is the experimentation with LSCI images under different depths and exposure times through adaptive processing methods, furthering the understanding the performance of the different approaches under these conditions. Results also suggest that it is possible to train a segmentation model to discriminate between pixels belonging to blood vessels and those belonging to tissue. Therefore, an adaptive feature extraction method may improve the quality of the features and thus increase the classification rates of blood vessels in LSCI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609016PMC
http://dx.doi.org/10.3390/mi13101788DOI Listing

Publication Analysis

Top Keywords

blood vessels
24
adaptive feature
8
feature extraction
8
blood
8
laser speckle
8
speckle contrast
8
contrast imaging
8
train segmentation
8
segmentation model
8
rates blood
8

Similar Publications

Background: Reaching parenchymal segments of the lateral lenticulostriate artery (LSA) perforators, which represent the medial resection limit in insular gliomas (IG), remains a challenge. The currently described methods are indirect and sometimes, imprecise.

Methods: We report an antegrade direct skeletonization technique to identify these tiny arteries at the medial end of IGs with an illustrative case of grade 2 astrocytoma.

View Article and Find Full Text PDF

Designing dual-targeted nanomedicines to enhance tumor delivery efficacy is a complex challenge, largely due to the barrier posed by blood vessels during systemic delivery. Effective transport across endothelial cells is, therefore, a critical topic of study. Herein, we present a synthetic biology-based approach to engineer dual-targeted ferritin nanocages (Dt-FTn) for understanding receptor-mediated transport across tumor endothelial cells.

View Article and Find Full Text PDF

RSK4 promotes the metastasis of clear cell renal cell carcinoma by activating RUNX1-mediated angiogenesis.

Cancer Biol Ther

December 2025

State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Military Medical University, Xi'an, China.

Ribosomal S6 protein kinase 4 (RSK4), a member of the serine‒threonine kinase family, plays a vital role in the Ras‒MAPK pathway. This kinase is responsible for managing several cellular activities, including cell growth, proliferation, survival, and mobility. In this study, we observed higher RSK4 protein expression in clear cell renal cell carcinoma (ccRCC) than in normal kidney tissue, and the overexpression of RSK4 might predict poor outcomes for ccRCC patients.

View Article and Find Full Text PDF

The management of multiple intracranial aneurysms presents significant clinical challenges, particularly when complicated by underlying conditions such as cerebral atherosclerosis. This case report highlights the successful treatment of a 66-year-old female diagnosed with three intracranial aneurysms located in the right middle cerebral artery (MCA), pericallosal artery, and M2 segment. The patient also had a history of systemic atherosclerosis and right-sided breast cancer, factors that increased the complexity of surgical intervention.

View Article and Find Full Text PDF

Prospects for Narrow Band Imaging Magnification Endoscopy in Oral Lesions: Recommendations from Oral and Maxillofacial Surgeons and a Gastroenterologist.

Cancers (Basel)

December 2024

Division of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Reconstructive Surgery School of Dentistry, Iwate Medical University, Morioka 020-8505, Iwate, Japan.

Narrow band imaging (NBI) magnification endoscopy for the diagnosis of early-stage oral cavity-related cancer and precancerous lesions can recognize oral lesions as brownish areas, and can observe intraepithelial papillary capillary loops (IPCLs) in the mucosa and submucosa to make a qualitative diagnosis of the lesion and highlight the mucosal surface microstructure to facilitate appropriate diagnosis and early treatment. IPCLs are classified from Type 0 to IV: Type 0 is normal mucosa or no blood vessels observed, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!