Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Modifying the natural characteristics of PLA 3D-printed models is of interest in various research areas in which 3D-printing is applied. Thus, in this study, we describe the simple impregnation of FDM 3D-printed PLA samples with well-defined silver nanoparticles and an iron metal salt. Quasi-spherical and dodecahedra silver particles were strongly attached at the channels of 3D-printed milli-fluidic reactors to demonstrate their attachment and interaction with the flow, as an example. Furthermore, Fenton-like reactions were successfully developed by an iron catalyst impregnated in 3D-printed stirrer caps to induce the degradation of a dye and showed excellent reproducibility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612141 | PMC |
http://dx.doi.org/10.3390/mi13101675 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!