Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Weight loss and increased physical activity may promote beneficial modulation of the metabolome, but limited evidence exists about how very low-level weight loss affects the metabolome in previously non-obese active individuals. Following a weight loss period (21.1 ± 3.1 weeks) leading to substantial fat mass loss of 52% (−7.9 ± 1.5 kg) and low body fat (12.7 ± 4.1%), the liquid chromatography-mass spectrometry-based metabolic signature of 24 previously young, healthy, and normal weight female physique athletes was investigated. We observed uniform increases (FDR < 0.05) in bile acids, very-long-chain free fatty acids (FFA), and oxylipins, together with reductions in unsaturated FFAs after weight loss. These widespread changes, especially in the bile acid profile, were most strongly explained (FDR < 0.05) by changes in android (visceral) fat mass. The reported changes did not persist, as all of them were reversed after the subsequent voluntary weight regain period (18.4 ± 2.9 weeks) and were unchanged in non-dieting controls (n = 16). Overall, we suggest that the reported changes in FFA, bile acid, and oxylipin profiles reflect metabolic adaptation to very low levels of fat mass after prolonged periods of intense exercise and low-energy availability. However, the effects of the aforementioned metabolome subclass alteration on metabolic homeostasis remain controversial, and more studies are warranted to unravel the complex physiology and potentially associated health implications. In the end, our study reinforced the view that transient weight loss seems to have little to no long-lasting molecular and physiological effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609491 | PMC |
http://dx.doi.org/10.3390/metabo12100928 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!