Ultrafiltration is widely used to treat various environmental waters, and on-line membrane cleaning with various chemical reagents is frequently employed to sustain the filtration flux. However, the residue of cleaning agents in the ultrafiltration system is unavoidable, which may affect microbiological properties and biofilm formation during the next-round filtration. By investigating the changes in microbial characteristics, and their biofouling behaviors after exposure to HCl, NaOH, NaClO, citric acid (CA), and sodium dodecyl sulfonate (SDS), this study fills a knowledge gap in microbial responses to various types of chemical cleaning agents in an ultrafiltration system. The result shows that HCl, NaOH, and NaClO affect the bacterial properties and subsequent attachment on the membrane surface, while CA and SDS have no obvious influence on microorganisms. Specifically, HCl, NaOH, and NaClO reduce the hydrophobicity and mean size of suspended microorganisms, increase the extracellular polymeric substances (EPS) release, and trigger intracellular reactive oxygen species (ROS) generation, resulting in the death of a large quantity of microorganisms. Due to the self-protecting strategy, plenty of living cells aggregate on the membrane surface and form a cake layer with a stratified structure, causing more severe membrane biofouling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606962PMC
http://dx.doi.org/10.3390/membranes12100920DOI Listing

Publication Analysis

Top Keywords

hcl naoh
12
naoh naclo
12
microbial responses
8
responses types
8
types chemical
8
cleaning agents
8
agents ultrafiltration
8
ultrafiltration system
8
membrane surface
8
chemical regents
4

Similar Publications

This paper investigates the impact of treatment with chemical solutions of varying pH values on the micro-macroscopic damage in coal samples under load, employing a combination of Small Angle X-ray Scattering (SAXS) experiments and uniaxial compression tests. The experimental results show that soaking coal samples in NaOH, HCl, and distilled water for 7 days leads to reductions in uniaxial compressive strength by 39.19%, 47.

View Article and Find Full Text PDF

Effect of Ph on the Physicochemical Properties of a Cassava Peel Starch Biopolymer.

Cell Physiol Biochem

January 2025

Carrera de Agroindustria, Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, ESPAM-MFL, Calceta. 130250, Ecuador.

Background/aims: This study investigates how pH levels affect the characteristics of biopolymer films manufactured from cassava peel starch. Cassava peel starch's abundance and biodegradability make it a promising candidate for sustainable packaging. The study seeks to improve film qualities such as thickness, density, moisture content, solubility, and optical properties by altering pH levels.

View Article and Find Full Text PDF

Influence of drought stress on phosphorus dynamics and maize growth in tropical ecosystems.

BMC Plant Biol

January 2025

Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou, 570228, China.

Drought has a significant impact on ecosystem functions, especially on the biogeochemical cycling of phosphorus (P), which is a crucial nutrient for plant growth and productivity. Despite its importance, the effects of different drought scenarios on soil P cycling and availability remain poorly understood in previous studies. This study simulated drought conditions in tropical soils using maize as a test crop under varying field capacity (FC) levels (100%, 80%, 60%, 40%, and 20%) over a 60-day pot experiment.

View Article and Find Full Text PDF

A digital-movie-based flow colorimetry for pH measurement using a universal indicator has been applied to the end point detection of acid-base titrations. A two-channel flow system of feedback-based flow ratiometry, primarily consisting of two peristaltic pumps, a digital microscope-based detector, and a laptop computer, was constructed; a Visual Basic.NET program written in-house was used for automating the analytical processes.

View Article and Find Full Text PDF

Bio-nanomaterials are gaining increasing attention due to their renewable and eco-friendly characteristics. Among these, nanocrystalline cellulose (NCC) stands out as one of the most advanced materials for applications in food, healthcare, composite production, and beyond. In this study, NCC was successfully extracted from cotton-based textile waste using a combination of chemical and mechanical methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!