AI Article Synopsis

  • Catalase and glutathione peroxidase (GPx) are key antioxidant enzymes that help control hydrogen peroxide levels in cells, and their dysfunction can lead to oxidative stress.
  • Research indicates that patients with schizophrenia have impaired activity of these enzymes, with conflicting findings on their levels in various studies.
  • This study measured the activity of catalase and GPx in 68 schizophrenia inpatients compared to 59 healthy controls, revealing significantly lower levels in patients, with some dependence on the severity and duration of symptoms.

Article Abstract

Background and Objectives: Catalase and glutathione peroxidase (GPx) are important antioxidant enzymes that break down hydrogen peroxide (H2O2) in order to control its intracellular concentration, thus enabling its physiological role and preventing toxic effects. A lack or disruption of their function leads to the accumulation of hydrogen peroxide and the occurrence of oxidative stress. Accumulating studies have shown that the activities of key antioxidant enzymes are impaired in patients with schizophrenia. Since the published results are contradictory, and our previous studies found significantly higher erythrocyte superoxide dismutase (SOD) activity in patients with schizophrenia, the aim of this study was to determine the activity of enzymes that degrade hydrogen peroxide in the same group of patients, as well as to examine their dependence on clinical symptoms, therapy, and parameters associated with this disease. Materials and Methods: Catalase and GPx activities were determined in the erythrocytes of 68 inpatients with schizophrenia and 59 age- and gender-matched healthy controls. The clinical assessment of patients was performed by using the Positive and Negative Syndrome Scale (PANSS). The catalase activity was measured by the kinetic spectrophotometric method, while the GPx activity was determined by the commercially available Ransel test. Results: Erythrocyte catalase and GPx activities were significantly lower (p < 0.001 and p < 0.01, respectively) in subjects with schizophrenia than they were in healthy individuals. Lower catalase activity does not depend on heredity, disease onset, the number of episodes, or disease duration, while GPx activity showed significant changes in patients who had more than one episode and in those who had been suffering from the disease for over a year. Significantly lower catalase activity was noted in the PANSS(+/−) group in comparison with the PANSS(+) and PANSS(−) groups. The lowest catalase activity was found in subjects who were simultaneously treated with first- and second-generation antipsychotics; this was significantly lower than it was in those who received only one class of antipsychotics. Conclusion: These results indicate the presence of oxidative stress in the first years of clinically manifested schizophrenia and its dependence on the number of psychotic episodes, illness duration, predominant symptomatology, and antipsychotic medication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609318PMC
http://dx.doi.org/10.3390/medicina58101491DOI Listing

Publication Analysis

Top Keywords

catalase activity
16
patients schizophrenia
12
hydrogen peroxide
12
catalase
8
erythrocyte catalase
8
catalase glutathione
8
glutathione peroxidase
8
antioxidant enzymes
8
oxidative stress
8
activity
8

Similar Publications

This study aimed to investigate the effects of β-glucan derived from Euglena gracilis (EGB), an edible microalga, on particulate matter (PM)-induced airway inflammation in A549 cells and BALB/c mice. EGB effectively suppressed the mRNA and protein levels of inflammatory cytokines (IL-6, IL-1β, TNF-α, IL-8) and mediators (iNOS, COX-2), while inhibiting the NF-κB and MAPK signaling pathways triggered by PM exposure and reducing nuclear NF-κB levels. Additionally, EGB decreased PM-induced ROS production and increased the protein levels of NRF2 and HO-1, along with genes encoding antioxidant enzymes (catalase, GPx, SOD1), associated with elevated nuclear NRF2 levels.

View Article and Find Full Text PDF

Responses of microbial communities in coastal sediments exposed to triclocarban and triclosan.

Mar Pollut Bull

January 2025

College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China. Electronic address:

Triclocarban (TCC) and triclosan (TCS) are applied in a wide range of pharmaceutical and personal care products to prevent or reduce bacterial growth. Due to their extensive application, they are frequently detected in marine environments. In this study, marine sediment systems exposed to different concentrations of TCC and TCS were established to evaluate their effects on microbial communities.

View Article and Find Full Text PDF

Selenium nanoparticles are well known for their antioxidant and stress-mitigating properties. In our study, composite nanoformulations of selenium and chitosan have been synthesized. The synthesized composite nanoformulations were 50 nm in diameter, spherical in shape, and had higher antioxidant activities and stability than the selenium and chitosan nanoparticles.

View Article and Find Full Text PDF

Thirty male Hu lambs (38.95 ± 3.87 kg; 6 months old) were randomly assigned to two groups: (1) SBM (a basal diet with soybean meal) and (2) FSM (a diet replacing 10 % soybean meal with 10 % flax seed meal) to evaluate their effects on Hu lamb production and slaughter performance, meat quality, muscle fatty acid composition, and antioxidant capacity.

View Article and Find Full Text PDF

Macrophage membrane-biomimetic ROS-responsive platinum nanozyme clusters for acute kidney injury treatment.

Biomaterials

December 2024

Department of Biotherapy and Department of Hematology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China. Electronic address:

Acute kidney injury (AKI) is a common clinical syndrome characterized by the rapid loss of renal filtration function. No standard therapeutic agent option is currently available. The development and progression of AKI is a continuous and dynamical pathological process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!