Different Types of Particle Effects in Creep Tests of CoCrFeNiMn High-Entropy Alloy.

Materials (Basel)

Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Za Slovankou 1782/3, CZ-18200 Praha, Czech Republic.

Published: October 2022

Compressive creep tests were performed on a CoCrFeNiMn equiatomic alloy with the dispersion of (i) aluminum nitride or (ii) boron nitride at temperatures of 973 K and 1073 K. The results are compared with previously published creep rates of the unreinforced matrix alloy and the alloy when strengthened by yttrium + titanium oxides. The comparison reveals that the creep rate is essentially unchanged by the presence of aluminum nitride particles, whereas it is reduced by the presence of oxide particles. Boron nitride particles do not influence the creep rate at low stresses but reduce it substantially at high stresses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611423PMC
http://dx.doi.org/10.3390/ma15207363DOI Listing

Publication Analysis

Top Keywords

creep tests
8
aluminum nitride
8
boron nitride
8
creep rate
8
nitride particles
8
creep
5
types particle
4
particle effects
4
effects creep
4
tests cocrfenimn
4

Similar Publications

In order to enhance the aging resistance, high temperature stability and low temperature crack resistance of asphalt pavement materials, 0.06% oxidized graphene (GO) and 12% polyurethane (PU) were used as composite modifiers to modify the base asphalt. The RTFOT test was conducted to evaluate the anti-aging performance of the modified asphalt.

View Article and Find Full Text PDF

Enhancing the CO Oxidation Performance of Copper by Alloying with Immiscible Tantalum.

ACS Appl Mater Interfaces

January 2025

School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.

Copper-tantalum (Cu-Ta) immiscible alloy nanoparticles (NPs) have been the subject of extensive research in the field of structural materials, due to their exceptional nanostructural stability and high-temperature creep properties. However, Cu is also a highly active oxidation catalyst due to its abundant valence changes. In this study, we have for the first time obtained homogeneous CuTa ( = 0.

View Article and Find Full Text PDF

Creep Resistance and Microstructure Evolution in P23/P91 Welds.

Materials (Basel)

January 2025

Faculty of Materials Science and Technology, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic.

This paper summarizes the results of investigations into heterogeneous P23/P91 welds after long-term creep exposure at temperatures of 500, 550 and 600 °C. Two variants of welds were studied: In Weld A, the filler material corresponded to P91 steel, while in Weld B, the chemical composition of the consumable material matched P23 steel. The creep rupture strength values of Weld A exceeded those of Weld B at all testing temperatures.

View Article and Find Full Text PDF

Corrosion in reinforced concrete (RC) structures has led to the increased adoption of non-corrosive materials, such as carbon fiber-reinforced polymers (CFRPs), as replacements for traditional steel rebar. However, ensuring the long-term reliability of CFRP grids under sustained stress is critical for achieving safe and effective designs. This study investigates the long-term tensile creep rupture behavior of CFRP grids to establish a design threshold for their tensile strength under sustained loading conditions in demanding structural applications.

View Article and Find Full Text PDF

Excavation of underground engineering structures involving deeply buried water-rich soft rocks is generally carried out using the artificial freezing method. A series of undrained uniaxial and triaxial shear and creep tests were conducted on soft rocks under different confining pressures (0, 0.2, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!