Electronic Band Structure and Surface States in Dirac Semimetal LaAgSb.

Materials (Basel)

Institute of Nuclear Physics, Polish Academy of Sciences, W. E. Radzikowskiego 152, 31-342 Kraków, Poland.

Published: October 2022

LaAgSb2 is a Dirac semimetal showing charge density wave (CDW) order. Previous angle-resolved photoemission spectroscopy (ARPES) results suggest the existence of the Dirac-cone-like structure in the vicinity of the Fermi level along the Γ-M direction. This paper is devoted to a complex analysis of the electronic band structure of LaAgSb2 by means of ARPES and theoretical studies within the ab initio method as well as tight binding model formulation. To investigate the possible surface states, we performed the direct DFT slab calculation and the surface Green function calculation for the (001) surface. The appearance of the surface states, which depends strongly on the surface, points to the conclusion that LaSb termination is realized in the cleaved crystals. Moreover, the surface states predicted by our calculations at the Γ and points are found by ARPES. Nodal lines, which exist along the X-R and M-A paths due to crystal symmetry, are also observed experimentally. The calculations reveal other nodal lines, which originate from the vanishing of spin-orbit splitting and are located at the X-M-A-R plane at the Brillouin zone boundary. In addition, we analyze the band structure along the Γ-M path to verify whether Dirac surface states can be expected. Their appearance in this region is not confirmed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609572PMC
http://dx.doi.org/10.3390/ma15207168DOI Listing

Publication Analysis

Top Keywords

surface states
20
band structure
12
electronic band
8
surface
8
dirac semimetal
8
nodal lines
8
states
5
structure
4
structure surface
4
states dirac
4

Similar Publications

Background: Motion complexity is necessary for adapting to external changes, but little is known about trunk motion complexity during seated perturbation in individuals with spinal cord injury (SCI). We aimed to investigate changes following SCI in trunk segmental motion complexity across different perturbation directions and how they affect postural control ability in individuals with SCI.

Methods: A total of 17 individuals with SCI and 18 healthy controls participated in challenging sagittal-seated perturbations with hand protection.

View Article and Find Full Text PDF

Chemically Hydrophobic and Structurally Antireflective Nanocoatings in Butterflies.

ACS Appl Bio Mater

January 2025

Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, Geneva CH-1211, Switzerland.

Moth-eye nanostructures, known for their biological antireflective properties, are formed by a self-assembly mechanism. Understanding and replicating this mechanism on artificial surfaces open avenues for the engineering of bioinspired multifunctional nanomaterials. Analysis of corneal nanocoatings from butterflies of the genus reveals a variety of nanostructures with uniformly strong antiwetting properties accompanied by varying antireflective functionalities.

View Article and Find Full Text PDF

Atomically precise nanoclusters can be assembled into ordered superlattices with unique electronic, magnetic, optical and catalytic properties. The co-crystallization of nanoclusters with functional organic molecules provides opportunities to access an even wider range of structures and properties, but can be challenging to control synthetically. Here we introduce a supramolecular approach to direct the assembly of atomically precise silver nanoclusters into a series of nanocluster‒organic ionic co-crystals with tunable structures and properties.

View Article and Find Full Text PDF

Single-cell genomics technologies have accelerated our understanding of cell-state heterogeneity in diverse contexts. Although single-cell RNA sequencing identifies rare populations that express specific marker transcript combinations, traditional flow sorting requires cell surface markers with high-fidelity antibodies, limiting our ability to interrogate these populations. In addition, many single-cell studies require the isolation of nuclei from tissue, eliminating the ability to enrich learned rare cell states based on extranuclear protein markers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!