Shale is a special kind of rock mass and it is particularly important to evaluate its brittleness for the extraction of gas and oil from nanoporous shale. The current brittleness studies are mostly macro-evaluation methods, and there is a lack of a micro-brittleness index that is based on nanoindentation tests. In this paper, nanoindentation tests are carried out on the surface of shale to obtain mechanical property, and then a novel micro-brittleness index is proposed. Drawing a heat map by meshing indentation, the distribution characteristics of the brittleness index for the surface of shale and the variation laws between the mineral and brittleness index are explored. The results showed that the dimensionless brittleness index involved parameters including indentation irreversible deformation, elastic modulus, hardness and fracture toughness. The micro-brittleness index of the shale ranged from 7.46 to 65.69, and the average brittleness index was 25.837. The brittleness index exhibited an obvious bimodal distribution and there was great heterogeneity on the surface of shale. The crack propagation channels were formed by connecting many indentation points on the shale surface with high brittleness. The total brittleness index of quartz minerals was high, but the cementation effect with different minerals was various. Although the general brittleness of clay was low, the high brittleness index phenomenon was also exhibited. Studying the micro-brittleness of shale provides a more detailed evaluation for the shale friability, which is used to determine the optimal shale oil and gas recovery regime.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606879 | PMC |
http://dx.doi.org/10.3390/ma15207143 | DOI Listing |
ACS Omega
December 2024
School of Earth Resources, China University of Geosience, Wuhan 430074, P. R. China.
Anal Chem
January 2025
Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington, Texas 76019, United States.
Fluorescence fluctuation spectroscopy experiments were conducted to better understand the complex mass transport dynamics of organic molecules in liquid-filled nanoporous media. Anodic aluminum oxide (AAO) membranes incorporating 10 and 20 nm diameter cylindrical pores were employed as model materials. Nile red (NR) dye was used as a fluorescent tracer.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Laboratorio de Espectroscopía Atómica y Molecular (LEAM), Universidad Industrial de Santander, Colombia.
Illite mineral is present in shale rocks, and its wettability behavior is significant for the oil and gas industry. In this work, the pH effects on the affinity between the (001) and (010) crystallographic planes of illite K(SiAl)(AlMg)O(OH) and direct and inverse emulsions were studied using molecular dynamics simulations. To develop the simulations, an atomistic model of illite was constructed following Löwenstein's rule.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Environmental Chemistry Section, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway.
Alum shale formations in Scandinavia are generally enriched in uranium (U) and, when exposed to air and water, may produce acidic rock drainage (ARD), releasing potentially harmful elements into the environment. Taraldrud is a legacy site in southeast Norway where approx. 51 000 m of alum shale was deposited in the 1980s-1990s.
View Article and Find Full Text PDFACS Omega
December 2024
Western Australia School of Mines, Minerals, Energy and Chemical Engineering, Curtin University, 26 Dick Perry Avenues, Kensington, 6151 WA, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!