Investigation of Fluidity and Strength of Enhanced Foam-Cemented Paste Backfill.

Materials (Basel)

Department of Endocrinology, The Third Xiangya Hospital, Centre South University, Changsha 410013, China.

Published: October 2022

To solve the problems of high cement dosage and poor fluidity of conventional cemented paste backfill (CPB) materials, the fluidity and strength properties of foam-cemented paste backfill (FCPB) were studied in combination. Based on determining the optimum contents of a foaming agent and a foam stabilizer, FCPB density was measured. To investigate the fluidity and strength of FCPB under different foam contents (0%, 5%, 10%, 15%, 20%, 25%, 30%, and 40%), different solid contents (75 wt.% and 77 wt.%), and different cement-tailing ratios (1:4 and 1:5), spread tests and unconfined compressive strength (UCS) tests were conducted. In addition, the FCPB microstructure was analyzed by scanning electron microscopy (SEM). The results indicate that the optimum combination dosages of sodium lauryl sulfate (K12) and sodium carboxymethyl cellulose (CMC) are 0.5 g/L and 0.2 g/L. The density decreases with the foam content (FC), but the fluidity and strength of the FCPB increase first and then decrease with the FC. In addition, the microstructure analysis explains the enhanced strength of FCPB by adding foam. These results contribute to further understanding the effect of foam content on the fluidity and strength of the FCPB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9605369PMC
http://dx.doi.org/10.3390/ma15207101DOI Listing

Publication Analysis

Top Keywords

fluidity strength
20
strength fcpb
16
paste backfill
12
foam-cemented paste
8
foam content
8
content fluidity
8
strength
7
fcpb
7
fluidity
5
foam
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!