The valence electron structure, bond energy, and cohesive energy of Mg, Zr, and α-Mg containing Zr, and α-Zr containing Mg crystals were calculated using the empirical electron theory of solids and molecules (EET). The calculation results show that the bond and cohesive energies of Zr were much greater than those of Mg, so Zr particles could precipitate ahead of α-Mg in general magnesium alloy melts or insoluble Zr particles exist when the magnesium melt temperature is relatively low. The bond energy of α-Zr decreases with the increase in Mg content; therefore, at the end of the growth of Zr particles, the remaining Zr atoms in the melt exist in the form of Mg-Zr clusters. In order to reduce the surface energy of Zr particles, the outer surface of Zr particles tends to terminate with a Zr-Mg atomic layer, that is, a stable two-dimensional Zr-Mg atomic layer is formed first on the (0001) crystal surface of the outermost surface of Zr particles. Furthermore, on the basis of the calculated results, a complementary criterion to the edge-to-edge model of heterogeneous nucleation is also proposed. {ure and single Zr particles cannot become the heterogeneous nucleus of α-Mg, but when there is an atomic layer of two-dimensional Zr-Mg on its surface, the nucleation of particles can be activated. Mg atoms in the liquid phase preferentially attach to the Zr-Mg/Mg-Zr atomic layer on the surface of Zr particles to grow and form a stable ordered structure, which lastly transforms Zr particles into efficient heterogeneous cores.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9605672 | PMC |
http://dx.doi.org/10.3390/ma15207063 | DOI Listing |
Phys Rev Lett
December 2024
National University of Singapore, Department of Materials Science and Engineering, 9 Engineering Drive 1, Singapore 117575.
By virtue of being atomically thin, the electronic properties of heterostructures built from two-dimensional materials are strongly influenced by atomic relaxation. The atomic layers behave as flexible membranes rather than rigid crystals. Here we develop an analytical theory of lattice relaxation in twisted moiré materials.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
February 2025
CSIRO Division of Mineral Products, Port Melbourne, Victoria, Australia.
The crystallographic phase change from tetragonal litharge (α-PbO; P4/nmm) to orthorhombic massicot (β-PbO; Pbcm) has been studied by full-matrix Rietveld analysis of high-temperature neutron powder diffraction data collected in equal steps from ambient temperature up to 925 K and back down to 350 K. The phase transformation takes place between 850 and 925 K, with the coexisting phases having equal abundance by weight at 885 K. The product massicot remains metastable on cooling to near ambient temperature.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China.
It is a major challenge to obtain broadband microwave absorption (MA) properties using low dielectric or magnetic nanoparticle-decorated carbon composites due to the limited single conductive loss or polarization loss of the carbon materials used as substrates. Novel pure cellulose-derived graphite carbon (CGC) materials can be used as an exceptional substrate option due to their special defective graphitic carbon structure, which provides both conduction and polarization loss. Herein, CGC@ZnO composites were first synthesized by atomic layer deposition (ALD) for use as microwave absorbents.
View Article and Find Full Text PDFChempluschem
January 2025
Izmir University of Economics: Izmir Ekonomi Universitesi, Department of Mechanical Engineering, Sakarya Cad. No: 156, 35330, Izmir, TURKEY.
Accurate determination of dielectric properties and surface characteristics of two-dimensional (2D) perovskite nanosheets, produced by chemical exfoliation of layered perovskites, is often hindered by exfoliation agent residues such as tetrabutylammonium (TBA). This study investigates the effect of ultraviolet (UV) light exposure duration on the removal of TBA residues from 2D Ca2NaNb4O13- nanosheets deposited on silicon substrates via Langmuir-Blodgett method using atomic force microscopy (AFM). Nanoscale adhesion forces between silicon AFM tips and nanofilms exposed to UV light for 3, 12, 18, and 24 hours were measured.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI 38000 Grenoble, France.
An original approach to characterize electrochemical interfaces at the atomic level, a challenging topic toward the understanding of electrochemical reactivity, is reported. We employed surface resonant X-ray diffraction experiments combined with their simulation using first-principle density functional theory calculations and were thus able to determine the molecular and electronic structures of the partially ionic layer facing the electrode surface, as well as the charge distribution in the surface metal layers. Pt(111) in an acidic medium at an applied potential excluding specific adsorption was studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!