Single Cell in a Gravity Field.

Life (Basel)

Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia.

Published: October 2022

The exploration of deep space or other bodies of the solar system, associated with a long stay in microgravity or altered gravity, requires the development of fundamentally new methods of protecting the human body. Most of the negative changes in micro- or hypergravity occur at the cellular level; however, the mechanism of reception of the altered gravity and transduction of this signal, leading to the formation of an adaptive pattern of the cell, is still poorly understood. At the same time, most of the negative changes that occur in early embryos when the force of gravity changes almost disappear by the time the new organism is born. This review is devoted to the responses of early embryos and stem cells, as well as terminally differentiated germ cells, to changes in gravity. An attempt was made to generalize the data presented in the literature and propose a possible unified mechanism for the reception by a single cell of an increase and decrease in gravity based on various deformations of the cortical cytoskeleton.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604728PMC
http://dx.doi.org/10.3390/life12101601DOI Listing

Publication Analysis

Top Keywords

single cell
8
altered gravity
8
negative changes
8
mechanism reception
8
early embryos
8
gravity
6
cell gravity
4
gravity field
4
field exploration
4
exploration deep
4

Similar Publications

Cuproptosis, a newly identified form of cell death, has drawn increasing attention for its association with various cancers, though its specific role in colorectal cancer (CRC) remains unclear. In this study, transcriptomic and clinical data from CRC patients available in the TCGA database were analyzed to investigate the impact of cuproptosis. Differentially expressed genes linked to cuproptosis were identified using Weighted Gene Co-Expression Network Analysis (WGCNA).

View Article and Find Full Text PDF

Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.

View Article and Find Full Text PDF

Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.

View Article and Find Full Text PDF

Sickle cell anemia (SCA) is a monogenic blood disease with complex and multifactorial pathophysiology. The endocannabinoid system (ECS) could be a candidate for modulating SCA complications, such as priapism, as it has demonstrated an essential role in hematopoiesis, platelet aggregation, and immune responses. We evaluated the association of ECS-related single nucleotide polymorphisms (SNP) (FAAH rs324420, MAGL rs604300, CNR1 rs7766029, and CNR2 rs35761398) with priapism in a Brazilian SCA cohort.

View Article and Find Full Text PDF

The proximity ligation-based Hi-C and derivative methods are the mainstream tools to study genome-wide chromatin interactions. These methods often fragment the genome using enzymes functionally irrelevant to the interactions per se, restraining the efficiency in identifying structural features and the underlying regulatory elements. Here we present Footprint-C, which yields high-resolution chromatin contact maps built upon intact and genuine footprints protected by transcription factor (TF) binding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!