Infection control and aggressive antibiotic therapy play an important role in the management of airway infections in individuals with cystic fibrosis (CF). The responses of airway epithelial cells to pathogens are likely to contribute to the pathobiology of CF lung disease. Primary airway epithelial cells obtained from individuals with CF, cultured and differentiated at air-liquid interface (ALI), effectively mimic the structure and function of the in vivo airway epithelium. With the recent respiratory viral pandemics, ALI cultures were extensively used to model respiratory infections in vitro to facilitate physiologically relevant respiratory research. Immunofluorescence staining and imaging were used as an effective tool to provide a fundamental understanding of host-pathogen interactions and for exploring the therapeutic potential of novel or repurposed drugs. Therefore, we described an optimized quantitative fluorescence microscopy assay for the wholemount staining and imaging of epithelial cell markers to identify distinct cell populations and pathogen-specific targets in ALI cultures of human airway epithelial cells grown on permeable support insert membranes. We present a detailed methodology using a graphical user interface (GUI) package to quantify the detected signals on a tiled whole membrane. Our method provided an imaging strategy of the entire membrane, overcoming the common issue of undersampling and enabling unbiased quantitative analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9605096 | PMC |
http://dx.doi.org/10.3390/jpm12101668 | DOI Listing |
Trends Endocrinol Metab
January 2025
School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK. Electronic address:
Respiratory infections and diseases pose significant challenges to society and healthcare systems, underscoring the need for preventative and therapeutic strategies. Recent research in rodent models indicates that short-chain fatty acids (SCFAs), metabolites produced by gut bacteria, may offer medicinal benefits for respiratory conditions. In this opinion, we summarize the current literature that highlights the potential of SCFAs to enhance immune balance in humans.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. Electronic address:
Previous studies have demonstrated that high-mobility group box protein 1(HMGB1) was increased and released to the extracellular and participated in the pathogenesis of steroid-insensitive asthma induced by toluene diisocyanate (TDI). Mitochondrial dysfunction of bronchial epithelia is a critical feature in TDI asthma. However, whether mitochondrial dysfunction regulated HMGB1 release in asthma remains unknown.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China.
Acute and chronic inflammation are important pathologies of benign airway stenosis (BAS) fibrosis, which is a frequent complication of critically ill patients. cGAS-STING signalling has an important role in inflammation and fibrosis, yet the function of STING in BAS remains unclear. Here we demonstrate using scRNA sequencing that cGAS‒STING signalling is involved in BAS, which is accompanied by increased dsDNA, expression and activation of STING.
View Article and Find Full Text PDFCell Rep Med
December 2024
Capital Institute of Pediatrics, Beijing 100020, China. Electronic address:
We have previously reported that high-alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) in the gut can cause endo-alcoholic fatty liver disease. Here, we discover that 91.2% of Kpn isolates from pulmonary disease samples also produce excess ethanol, which may be associated with respiratory disease severity.
View Article and Find Full Text PDFEBioMedicine
January 2025
Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China. Electronic address:
Background: Idiopathic pulmonary fibrosis (IPF) is a fibrosing interstitial pneumonia with restrictive ventilation. Recently, the structural and functional defects of small airways have received attention in the early pathogenesis of IPF. This study aimed to elucidate the characteristics of small airway epithelial dysfunction in patients with IPF and explore novel therapeutic interventions to impede IPF progression by targeting the dysfunctional small airways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!