Neural tube defects (NTDs) are congenital abnormalities in the central nervous system. The exact etiology of NTDs is still not determined, but several genetic and epigenetic factors have been studied. Folate supplementation during gestation is recommended to reduce the risk of NTDs. In this review we examine single nucleotide polymorphisms (SNPs) of the genes in the folate pathway associated with NTD. We reviewed the literature for all papers discussing both NTDs and SNPs in the folate pathway. Data were represented through five different genetic models. Quality assessment was performed using the Newcastle-Ottawa Scale (NOS) and Cohen's Kappa inter-rater coefficient assessed author agreement. Fifty-nine papers were included. SNPs in MTHFR, MTRR, RFC genes were found to be highly associated with NTD risk. NOS showed that high quality papers were selected, and Kappa Q-test was 0.86. Our combined results support the notion that SNPs significantly influence NTDs across the population, particularly in Asian ethnicity. Additional high-quality research from diverse ethnicities is needed and meta-regression analysis based on a range of criteria may provide a more complete understanding of the role of folate metabolism in NTDs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9605131PMC
http://dx.doi.org/10.3390/jpm12101609DOI Listing

Publication Analysis

Top Keywords

folate pathway
12
single nucleotide
8
nucleotide polymorphisms
8
neural tube
8
tube defects
8
associated ntd
8
ntds
6
folate
5
pathway gene
4
gene single
4

Similar Publications

Computational insights into maternal environmental pollutants and folate pathway regulation.

Reprod Toxicol

December 2024

Department of Genomic Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India, 121102. Electronic address:

Exposure to environmental pollutants during pregnancy can adversely affect fetal growth and postnatal development. While numerous studies have explored the interaction between environmental toxic chemicals and the folate pathway, few have examined their inhibitory effects on key targets. This computational study identified 27 maternal environmental toxicants using the Comparative Toxicogenomics Database (CTD) and analyzed them to identify their targets.

View Article and Find Full Text PDF

Biodegradable plastics, regarded as an ideal substitute for traditional plastics, are increasingly utilized across various industries. However, due to their unique degradation properties, they can generate microplastics (MPs) at a faster rate, potentially posing a threat to plant development. This study employed transcriptomics and metabolomics to investigate the effects of polylactic acid microplastics (PLA-MPs) on the physiological and biochemical characteristics of Brassica chinensis L.

View Article and Find Full Text PDF

ALDH1L1 plays a crucial role in folate metabolism, regulating the flow of one-carbon groups through the conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO in a NADP-dependent reaction. The downregulation of ALDH1L1 promotes malignant tumor growth, and silencing of ALDH1L1 is commonly observed in many cancers. In a previous study, knockout (KO) mice were found to have an altered liver metabotype, including significant alterations in glycine and serine.

View Article and Find Full Text PDF

A de novo gene promotes seed germination under drought stress in Arabidopsis.

Mol Biol Evol

December 2024

State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.

The origin of genes from non-coding sequences is a long-term and fundamental biological question. However, how de novo genes originate and integrate into the existing pathways to regulate phenotypic variations is largely unknown. Here, we selected seven genes from 782 de novo genes for functional exploration based on transcriptional and translational evidence.

View Article and Find Full Text PDF

Elucidating metabolic pathways through genomic analysis in highly heavy metal-resistant strains.

Heliyon

December 2024

Research Laboratory of Environmental Sciences and Sustainable Development, LR18ES32, University of Sfax, Tunisia.

The annotated and predicted genomes of five archaeal strains (AS1, AS2, AS8, AS11 and AS19), isolated from Sfax solar saltern sediments (Tunisia) and affiliated with , were performed by RAST webserver (Rapid Annotation using Subsystem Technology) and NCBI prokaryotic genome annotation pipeline (PGAP). The results showed the ability of strains to use a reduced semi-phosphorylative Entner-Doudoroff pathway for glucose degradation and an Embden-Meyerhof one for gluconeogenesis. They could use glucose, fructose, glycerol, and acetate as sole source of carbon and energy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!