Machine learning has been proven to provide good performances on stress detection tasks using multi-modal sensor data from a smartwatch. Generally, machine learning techniques need a sufficient amount of data to train a robust model. Thus, we need to collect data from several users and send them to a central server to feed the algorithm. However, the uploaded data may contain sensitive information that can jeopardize the user's privacy. Federated learning can tackle this challenge by enabling the model to be trained using data from all users without the user's data leaving the user's device. In this study, we implement federated learning-based stress detection and provide a comparative analysis between individual, centralized, and federated learning. The experiment was conducted on WESAD dataset by using Logistic Regression as the classifier. The experiment results show that in terms of accuracy, federated learning cannot reach the performance level of both individual and centralized learning. The individual learning strategy performs best with an average accuracy of 0.9998 and an average F-measure of 0.9996.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9605246PMC
http://dx.doi.org/10.3390/jpm12101584DOI Listing

Publication Analysis

Top Keywords

federated learning
16
individual centralized
12
stress detection
12
comparative analysis
8
analysis individual
8
centralized federated
8
learning
8
machine learning
8
data users
8
data
6

Similar Publications

This survey explores the transformative impact of foundation models (FMs) in artificial intelligence, focusing on their integration with federated learning (FL) in biomedical research. Foundation models such as ChatGPT, LLaMa, and CLIP, which are trained on vast datasets through methods including unsupervised pretraining, self-supervised learning, instructed fine-tuning, and reinforcement learning from human feedback, represent significant advancements in machine learning. These models, with their ability to generate coherent text and realistic images, are crucial for biomedical applications that require processing diverse data forms such as clinical reports, diagnostic images, and multimodal patient interactions.

View Article and Find Full Text PDF

Background: Population aging and the increase in memory-related diseases have motivated the search for accessible cognitive screening instruments. To develop a digital memory and learning test (DMLT) based on Rey's Auditory Verbal Learning Test (RAVLT) principles to assess cognition in the elderly and identify early cognitive decline.

Methods: The research was divided into two phases: developing the digital test and the experimental phase of comparison with a reference test.

View Article and Find Full Text PDF

Purpose Of Review: This review aims to evaluate the impact of artificial intelligence (AI) on cancer health equity, specifically investigating whether AI is addressing or widening disparities in cancer outcomes.

Recent Findings: Recent studies demonstrate significant advancements in AI, such as deep learning for cancer diagnosis and predictive analytics for personalized treatment, showing potential for improved precision in care. However, concerns persist about the performance of AI tools across diverse populations due to biased training data.

View Article and Find Full Text PDF

Molecular subtypes, such as defined by The Cancer Genome Atlas (TCGA), delineate a cancer's underlying biology, bringing hope to inform a patient's prognosis and treatment plan. However, most approaches used in the discovery of subtypes are not suitable for assigning subtype labels to new cancer specimens from other studies or clinical trials. Here, we address this barrier by applying five different machine learning approaches to multi-omic data from 8,791 TCGA tumor samples comprising 106 subtypes from 26 different cancer cohorts to build models based upon small numbers of features that can classify new samples into previously defined TCGA molecular subtypes-a step toward molecular subtype application in the clinic.

View Article and Find Full Text PDF

BioBERT based text mining for incorporating prior knowledge in the inference of genetic network models.

Comput Biol Med

January 2025

Health Innovation and Transformation Centre, Federation University, Victoria, 3842, Australia; BioThink, Queensland, 4020, Australia.

Reconstruction of Gene Regulatory Networks (GRNs) is essential for understanding gene interactions, their impact on cellular processes, and manifestation of diseases, including drug discovery. Among various mathematical and dynamic models used for GRN reconstruction, S-system model, comprising non-linear differential equations, is widely utilised to capture the behaviour of complex biological systems with non-linear and time-dependent interactions. However, as the network size increases, computational demand for network inference grows due to a greater number of estimation parameters, significantly impacting the performance of optimisation algorithms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!