To develop a non-thermal method to replace steam autoclaving for white-rot fungi fermentation, spawn was inoculated in wheat straw (WSI) or ensiled WS (WSI) at varying ratios of 10%, 20%, 30%, 40%, and 50%, and incubated at 28 °C for 28 days to determine the effects of the ensiling and inoculation ratio on the colonization and degradation ability of in wheat straw (WS). The results demonstrate that ensiling effectively inhibited the growth of aerobic bacteria and molds, as well as other harmful microorganisms in WS, which created a favorable condition for the growth of . After the treatment of , the pH of EWSI decreased to below 5, while that of WSI, except for the feedstocks of WSI-50%, was around 7, indicating that colonized well in the ensiled WS because the substrates dominated by are generally acidic. Correspondingly, except for the molds in WSI-50% samples, the counts of other microorganisms in WSI, such as aerobic bacteria and molds, were significantly higher than those in EWSI ( < 0.05), indicating that contaminant microorganisms had a competitive advantage in non-ensiled substrates. Incubation with did not significantly affect the cellulose content of all samples. However, the NDS content of EWSI was significantly higher than that of WSI ( < 0.05), and the hemicellulose and lignin contents were significantly lower than the latter ( < 0.05), except for the NDS and hemicellulose contents of WSI-50% samples. Correlation analysis revealed a stronger negative correlation between NDS content and the contents of hemicellulose, cellulose, and lignin in EWSI, which could be caused by the destruction of lignin and hemicellulose and the conversion from structural carbohydrates to fungal polysaccharides or other compounds in NDS form. Even for WSI-50% samples, the sugar yield of WS treated with improved with an increasing inoculation ratio, but the ratio was not higher than that of the raw material. However, the sugar yield of EWSI increased by 51-80%, primarily owing to the degradation of lignin and hemicellulose. Above all, ensiling improves the colonization ability of in WS, which promotes the degradation of lignin and hemicellulose and the enzymic hydrolysis of cellulose, so combining ensiling and fermentation has promising potential in the pretreatment of WS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9603578PMC
http://dx.doi.org/10.3390/ijerph192013668DOI Listing

Publication Analysis

Top Keywords

wheat straw
12
wsi-50% samples
12
lignin hemicellulose
12
colonization degradation
8
degradation ability
8
ability wheat
8
inoculation ratio
8
aerobic bacteria
8
bacteria molds
8
nds content
8

Similar Publications

Preparation of Magnetic Hemicellulosic Composite Microspheres and Adsorption of Copper Ions.

Polymers (Basel)

December 2024

Research Centre of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China.

In this study, the fabrication of magnetic hemicellulosic composite microspheres and the adsorption of copper ions are explored. The microspheres were prepared by the micro-emulsion technique, using FeO nanoparticles and hemicellulose extracted from wheat straw with the ionic liquid B[mim]Cl as a solvent. FeO nanoparticles, synthesized through coprecipitation, were evenly encapsulated within the hemicellulosic microspheres.

View Article and Find Full Text PDF

Effects of Substitution of Wheat Straw by Giant Reed on Growth Performance, Serum Biochemical Parameters, Nutrient Digestibility, and Antioxidant Properties of Sheep.

Animals (Basel)

December 2024

State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China.

The development and utilization of unconventional forage resources is crucial to alleviating the current situation of shortage of forage resources. Giant reed () is a promising forage resource from the Poaceae family, one of the largest herbaceous plants globally, with fast growth, high biomass yield, and strong ecological adaptability. However, there are still very few reports on the use of giant reed in livestock and poultry production.

View Article and Find Full Text PDF

The current study was designed to evaluate the effect of particle size (PS) and inclusion level of wheat straw (WS) obtained from genetically improved wheat on the performance and feeding behavior of Sahiwal cows. Twelve multiparous, mid-lactating Sahiwal cows (DIM 135 ± 25, mean ± SD; 12.8 ± 1.

View Article and Find Full Text PDF

Agro-processing industries generate a substantial quantity of biomass wastes. Conversion of these wastes into valuable material could be profitable considering both environmental and economic aspects. Among various biomass conversion methods, hydrothermal conversion can be used for co-production of biofuel and other valuable materials like carbon quantum dots (CQDs) and activated carbons.

View Article and Find Full Text PDF

Densification of biomass through pelletizing offers a promising approach to producing clean biofuels from renewable resources. This study, which investigates the impact of additive blends on wheat straw pellet making and upgrading the physiochemical properties, has revealed exciting possibilities. Five additives, including sawdust (SD), bentonite clay (BC), corn starch (S), crude glycerol (CG), and biochar (BioC), were chosen for this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!