A Simulation Experiment on Quality Dynamics of Reclaimed Water under Different Flow Exchanges.

Int J Environ Res Public Health

College of Water Sciences, Beijing Normal University, No. 19, Xinjiekouwai St., Haidian District, Beijing 100875, China.

Published: October 2022

Reclaimed water plays an important role in maintaining urban aquatic ecosystems, especially in areas with water shortages. However, there is little information on water quality dynamics and its driving mechanism in reclaimed water bodies. The simulated experiments were conducted to investigate the effect of flow exchange on water quality dynamics and soil microbial diversity for 100% reclaimed water and mixed water (50% reclaimed and 50% stream water), and the exchange periods ranged from 2 to 40 days. The results showed that the degradation coefficients () of COD and NH-N were 0.015 d and 0.001 d for the mixed water, while their values were negative for the reclaimed water. The flow exchange had little effect on water quality dynamics for the mixed water, which may be attributed to the relatively low concentration of TP in this reclaimed water. A small or great exchange period led to a relatively high fluctuation in during the experimental period and corresponded to a worse soil microbial diversity. These results indicate that it is not recommended to fill an isolated urban lake with 100% reclaimed water and that a suitable flow exchange period of 5~10 days could help self-purify the water quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9603255PMC
http://dx.doi.org/10.3390/ijerph192013091DOI Listing

Publication Analysis

Top Keywords

reclaimed water
28
quality dynamics
16
water
16
water quality
16
flow exchange
12
mixed water
12
reclaimed
8
water flow
8
exchange water
8
soil microbial
8

Similar Publications

Ozone disinfection of treated wastewater for inactivation of Cryptosporidium parvum for agricultural irrigation.

Water Environ Res

January 2025

Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico.

The reliance on agriculture in many nations has increased the use of treated wastewater for irrigation. However, reclaimed water still poses health risks from resistant pathogens like Cryptosporidium spp. Ozone, a strong disinfectant, has been used in water treatment.

View Article and Find Full Text PDF

Mining activities in arid regions of China have led to severe environmental degradation, including soil erosion, vegetation loss, and contamination of soil and water resources. These impacts are particularly pronounced in abandoned mining areas, where the cessation of mining operations has left vast landscapes unrehabilitated. In response, the Chinese government has implemented a series of legal and regulatory frameworks, such as the "Mine Environmental Protection and Restoration Program", aimed at promoting ecological restoration in these areas.

View Article and Find Full Text PDF

Keystone bacterial groups dominate Escherichia coli O157:H7 survival in long-term reclaimed water headwater stream.

Environ Pollut

January 2025

School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China. Electronic address:

Escherichia coli (E. coli) O157:H7 is a highly pathogenic zoonotic bacterium, with water serving as a key medium for its environmental transmission. However, the survival characteristics of E.

View Article and Find Full Text PDF

Membrane Treatment to Improve Water Recycling in an Italian Textile District.

Membranes (Basel)

January 2025

Department of Civil and Environmental Engineering, University of Florence, Via di Santa Marta 3, 50139 Firenze, Italy.

The textile district of Prato (Italy) has developed a wastewater recycling system of considerable scale. The reclaimed wastewater is characterized by high levels of hardness (32 °F on average), which precludes its direct reuse in numerous wet textile processes (e.g.

View Article and Find Full Text PDF

Microbial community structure and water quality performance in local scrubber reclaim system for water reclamation of the semiconductor industry: A case study of a semiconductor plant in Beijing.

Environ Res

January 2025

Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control of the Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, PR China.

The local scrubber reclaim (LSR) system plays a critical role in water reclamation and in reducing environmental pollution emissions in semiconductor factories. This study monitored the changes in water quality and assessed the key stages of pollutant removal, with a primary focus on evaluating microbial growth and the shifts in microbial community structure and function in the LSR system. The results showed that activated carbon filtration (ACF) effectively removed total organic carbon (TOC) with a removal rate of 59.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!