In severe malformations with a lack of native tissues, treatment options are limited. We aimed at expanding tissue in vivo using the body as a bioreactor and developing a sustainable single-staged procedure for autologous tissue reconstruction in malformation surgery. Autologous micro-epithelium from skin was integrated with plastically compressed collagen and a degradable knitted fabric mesh. Sixty-three scaffolds were implanted in nine rats for histological and mechanical analyses, up to 4 weeks after transplantation. Tissue integration, cell expansion, proliferation, inflammation, strength, and elasticity were evaluated over time in vivo and validated in vitro in a bladder wound healing model. After 5 days in vivo, we observed keratinocyte proliferation on top of the transplant, remodeling of the collagen, and neovascularization within the transplant. At 4 weeks, all transplants were fully integrated with the surrounding tissue. Tensile strength and elasticity were retained during the whole study period. In the in vitro models, a multilayered epithelium covered the defect after 4 weeks. Autologous micro-epithelial transplants allowed for cell expansion and reorganization in vivo without conventional pre-operative in vitro cell propagation. The method was easy to perform and did not require handling outside the operating theater.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604108 | PMC |
http://dx.doi.org/10.3390/ijms232012703 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Institute of Science and Technology Austria, AT-3400 Klosterneuburg, Austria.
Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht 3584 CT, The Netherlands.
Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].
View Article and Find Full Text PDFPlant Cell
January 2025
Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
Super-resolution methods provide far better spatial resolution than the optical diffraction limit of about half the wavelength of light (∼200-300 nm). Nevertheless, they have yet to attain widespread use in plants, largely due to plants' challenging optical properties. Expansion microscopy improves effective resolution by isotropically increasing the physical distances between sample structures while preserving relative spatial arrangements and clearing the sample.
View Article and Find Full Text PDFSci Adv
January 2025
Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA.
Chimeric antigen receptor T cells (CART) targeting CD19 through CD28.ζ signaling induce rapid lysis of leukemic blasts, contrasting with persistent tumor control exhibited by 4-1BB.ζ-CART.
View Article and Find Full Text PDFSci Immunol
January 2025
Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
Regulatory T cells (T) accumulate in the visceral adipose tissue (VAT) to maintain systemic metabolic homeostasis but decline during obesity. Here, we explored the metabolic pathways controlling the homeostasis, composition, and function of VAT T under normal and high-fat diet feeding conditions. We found that cholesterol metabolism was specifically up-regulated in ST2 VAT T subsets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!