Angiogenesis inhibitor drugs have been explored as important pharmacological agents for cancer therapy, including hepatocellular carcinoma. These agents have several drawbacks, such as drug resistance, nonspecific toxicity, and systemic side effects. Therefore, combination therapy of the drug and small interfering RNA could be a promising option to achieve high therapeutic efficacy while allowing a lower systemic dose. Therefore, we studied adding an alpha-fetoprotein siRNA (-siRNA) incorporated on polymeric nanoparticles (NPs) along with angiogenesis inhibitor drugs. The siRNA-loaded NPs were successfully synthesized at an average size of 242.00 ± 2.54 nm. Combination treatment of -siRNA NPs and a low dose of sunitinib produced a synergistic effect in decreasing cell viability in an in vitro hepatocellular carcinoma (HCC) model. -siRNA NPs together with sorafenib or sunitinib greatly inhibited cell proliferation, showing only 39.29 ± 2.72 and 44.04 ± 3.05% cell viability, respectively. Moreover, quantitative reverse transcription PCR (qRT-PCR) demonstrated that -siRNA incorporated with NPs could significantly silence -mRNA expression compared to unloaded NPs. Interestingly, the expression level of -mRNA was further decreased to 28.53 ± 5.10% when sunitinib was added. Therefore, this finding was considered a new promising candidate for HCC treatment in reducing cell proliferation and enhancing therapeutic outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604025PMC
http://dx.doi.org/10.3390/ijms232012666DOI Listing

Publication Analysis

Top Keywords

angiogenesis inhibitor
12
polymeric nanoparticles
8
inhibitor drugs
8
hepatocellular carcinoma
8
-sirna incorporated
8
-sirna nps
8
cell viability
8
cell proliferation
8
nps
6
study sirna
4

Similar Publications

Preeclampsia (PE) is a serious complication of pregnancy linked to endothelial dysfunction and an imbalance in the gut microbiota. While (AKK) has shown promise in alleviating PE symptoms, the use of live bacteria raises safety concerns. This study explored the potential of pasteurized (pAKK) as a safer alternative for treating PE, focusing on its effects on endothelial function and metabolic regulation.

View Article and Find Full Text PDF

The Complex Role of Matrix Metalloproteinase-2 (MMP-2) in Health and Disease.

Int J Mol Sci

December 2024

Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.

Matrix metalloproteinase-2 (MMP-2), a zinc-dependent enzyme, plays a critical role in the degradation and remodeling of the extracellular matrix (ECM). As a member of the gelatinase subgroup of matrix metalloproteinases, MMP-2 is involved in a variety of physiological processes, including tissue repair, wound healing, angiogenesis, and embryogenesis. It is primarily responsible for the degradation of type IV and V collagen, fibronectin, laminin, and elastin, which are essential components of the ECM.

View Article and Find Full Text PDF

Immune Microenvironment and the Effect of Vascular Endothelial Growth Factor Inhibition in Hepatocellular Carcinoma.

Int J Mol Sci

December 2024

Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kita 761-0793, Kagawa, Japan.

Systemic therapy for unresectable hepatocellular carcinoma (HCC) has progressed with the development of multiple kinases, such as vascular endothelial growth factor (VEGF) signaling, targeting cancer growth and angiogenesis. Additionally, the efficacy of sorafenib, regorafenib, lenvatinib, ramucirumab, and cabozantinib has been demonstrated in various clinical trials, and they are now widely used in clinical practice. Furthermore, the development of effective immune checkpoint inhibitors has progressed in systemic therapy for unresectable HCC, and atezolizumab + bevacizumab (atezo/bev) therapy and durvalumab + tremelimumab therapy are now recommended as first-line treatment.

View Article and Find Full Text PDF

Cancer is a leading cause of death, so continuous efforts into cancer therapy are imperative. In tumor cells, telomerase and oncogene activity are key points for uncontrolled cell growth. Targeting these processes with ligands that inhibit telomerase and/or reduce oncogene expression has been identified as a promising cancer therapy.

View Article and Find Full Text PDF

Angiogenesis inhibition treatments are limited and are often too late for advanced gastric cancer (GC) patients, in whom its efficacy is reduced. New molecular biomarkers are needed to optimize therapy regimens. In regard to this framework, circulating miRNAs, with high sensitivity and specificity, could be useful biomarkers of GC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!