Prion diseases are transmissible spongiform encephalopathies (TSEs) caused by a conformational conversion of the native cellular prion protein (PrP) to an abnormal, infectious isoform called PrP. Amyotrophic lateral sclerosis, Alzheimer's, Parkinson's, and Huntington's diseases are also known as prion-like diseases because they share common features with prion diseases, including protein misfolding and aggregation, as well as the spread of these misfolded proteins into different brain regions. Increasing evidence proposes the involvement of epigenetic mechanisms, namely DNA methylation, post-translational modifications of histones, and microRNA-mediated post-transcriptional gene regulation in the pathogenesis of prion-like diseases. Little is known about the role of epigenetic modifications in prion diseases, but recent findings also point to a potential regulatory role of epigenetic mechanisms in the pathology of these diseases. This review highlights recent findings on epigenetic modifications in TSEs and prion-like diseases and discusses the potential role of such mechanisms in disease pathology and their use as potential biomarkers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604074 | PMC |
http://dx.doi.org/10.3390/ijms232012609 | DOI Listing |
Alzheimers Dement (Amst)
January 2025
Biochemistry and Molecular Biology Department Neurodegenerative Pathologies LBMMS Hospices Civils de Lyon Lyon France.
Introduction: Seed amplification assays (SAAs) demonstrate remarkable diagnostic performance in alpha-synucleinopathies. However, existing protocols lack accessibility in routine laboratories, mainly due to the requirement for in-house production of recombinant alpha-synuclein (aSyn). This study proposes a cerebrospinal fluid (CSF) aSyn-SAA protocol using solely commercial reagents to facilitate its clinical implementation.
View Article and Find Full Text PDFMov Disord Clin Pract
January 2025
TSE/Prion Biochemistry Section, DIR, National Institute of Allergy and Infectious Diseases (NIAID), Hamilton, Montana, USA.
Background: Cerebrospinal fluid (CSF) α-synuclein seeding activity (SSA) via a seed amplification assay might predict central Lewy body diseases (LBD) in at-risk individuals.
Objective: The aim was to assess CSF SSA in a prospective, longitudinal study.
Methods: Participants self-reported risk factors were genetics, olfactory dysfunction, dream enactment behavior, orthostatic intolerance, or hypotension; individuals who had ≥3 confirmed risk factors underwent CSF sampling and were followed for up to 7.
Commun Biol
January 2025
Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA.
Aggregation of microtubule-associated tau protein is a distinct hallmark of several neurodegenerative disorders such as Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and progressive supranuclear palsy (PSP). Tau oligomers are suggested to be the primary neurotoxic species that initiate aggregation and propagate prion-like structures. Furthermore, different diseases are shown to have distinct structural characteristics of aggregated tau, denoted as polymorphs.
View Article and Find Full Text PDFVet Res
January 2025
UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
Misfolding of the cellular PrP (PrP) protein causes prion disease, leading to neurodegenerative disorders in numerous mammalian species, including goats. A lack of PrP induces complete resistance to prion disease. The aim of this work was to engineer Alpine goats carrying knockout (KO) alleles of PRNP, the PrP-encoding gene, using CRISPR/Cas9-ribonucleoproteins and single-stranded donor oligonucleotides.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada. Electronic address:
Bank voles are susceptible to prion strains from many different species, yet the molecular mechanisms underlying the ability of bank vole prion protein (BVPrP) to function as a universal prion acceptor remain unclear. Potential differences in molecular environments and protein interaction networks on the cell surface of brain cells may contribute to BVPrP's unusual behavior. To test this hypothesis, we generated knock-in mice that express physiological levels of BVPrP (M109 isoform) and employed mass spectrometry to compare the interactomes of mouse (Mo) PrP and BVPrP following mild in vivo crosslinking of brain tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!