Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The photoprotective role of anthocyanin remains controversial. In this study, we explored the effects of anthocyanin on photosynthesis and photoprotection using transgenic 'Galaxy Gala' apple plants overexpressing under high light stress. The overexpression of dramatically enhanced leaf anthocyanin accumulation, allowing more visible light to be absorbed, particularly in the green region. However, through post-transcriptional regulation, anthocyanin accumulation lowered leaf photosynthesis in both photochemical reaction and CO fixation capacities. Anthocyanin accumulation also led to a decreased de-epoxidation state of the xanthophyll cycle and antioxidant capacities, but this is most likely a response to the light-shielding effect of anthocyanin, as indicated by a higher chlorophyll concentration and lower chlorophyll a/b ratio. Under laboratory conditions when detached leaves lost carbon fixation capacity due to the limitation of CO supply, the photoinhibition of detached transgenic red leaves was less severe under strong white, green, or blue light, but it became more severe in response to strong red light compared with that of the wild type. In field conditions when photosynthesis was performed normally in both green and transgenic red leaves, the degree of photoinhibition was comparable between transgenic red leaves and wild type leaves, but it was less severe in transgenic young shoot bark compared with the wild type. Taken together, these data show that anthocyanin protects plants from high light stress by absorbing excessive visible light despite reducing photosynthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604341 | PMC |
http://dx.doi.org/10.3390/ijms232012616 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!