There has been an immense effort by global pharmaceutical companies to develop anti-COVID-19 drugs, including small molecule-based RNA replication inhibitors via drug repositioning and antibody-based spike protein blockers related to cell entry by SARS-CoV-2. However, several limitations to their clinical use have emerged in addition to a lack of progress in the development of small molecule-based cell entry inhibitors from natural products. In this study, we tested the effectiveness of kuwanon C (KC), which has mainly been researched using in silico docking simulation and can serve as an effective building block for developing anti-COVID-19 drugs, in blocking the spike S1 RBD:ACE2 receptor interaction. KC is a natural product derived from L., commonly known as mulberry, which has known antiviral efficacy. Molecular interaction studies using competitive ELISA and the BLItz system revealed that KC targets both the spike S1 RBD and the ACE2 receptor, successfully disrupting their interaction, as supported by the in silico docking simulation. Furthermore, we established a mechanism of action by observing how KC prevents the infection of SARS-CoV-2 spike pseudotyped virus in ACE2/TPRSS2-overexpressing HEK293T cells. Finally, we demonstrated that KC inhibits clinical isolates of SARS-CoV-2 in Vero cells. Future combinations of small molecule-based cell entry inhibitors, such as KC, with the currently prescribed RNA replication inhibitors are anticipated to significantly enhance the efficacy of COVID-19 therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604257 | PMC |
http://dx.doi.org/10.3390/ijms232012516 | DOI Listing |
Curr Comput Aided Drug Des
January 2025
Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, 201306, Uttar Pradesh, India.
Introduction: Squamous cell carcinoma is a major public health concern, with traditional treatments such as surgery, chemotherapy, and radiation therapy frequently resulting in significant side effects. Immunotherapy targeting checkpoints such as PD-1, CTLA-4, and B7- H3 provides a more specific approach but incurs high costs due to monoclonal antibodies.
Aim And Objective: This study aims to investigate the potential of natural flavonoids as lowtoxicity, small molecule-based alternatives targeting the PD-1 immunological checkpoint for SCC treatment.
Mater Horiz
January 2025
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
Magnetic resonance imaging (MRI) is considered one of the most valuable diagnostic technologies in the 21st century. To enhance the image contrast of anatomical features, MRI contrast agents have been widely used in clinical MRI diagnosis, especially those based on gadolinium, manganese, and iron oxide. However, these metal-based MRI contrast agents show potential toxicity to patients, which urges researchers to develop novel MRI contrast agents that can replace metal-based MRI contrast agents.
View Article and Find Full Text PDFStem Cell Reports
December 2024
School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shandong 266071, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China. Electronic address:
Definitive endoderm (DE) derived from human pluripotent stem cells (hPSCs) holds great promise for cell-based therapies and drug discovery. However, current DE differentiation methods required undefined components and/or expensive recombinant proteins, limiting their scalable manufacture and clinical use. Homogeneous DE differentiation in defined and recombinant protein-free conditions remains a major challenge.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, Minneapolis, MN, USA.
We report the development of a small molecule-based barcoding platform for pooled screening of nanoparticle delivery. Using aryl halide-based tags (halocodes), we achieve high-sensitivity detection via gas chromatography coupled with mass spectrometry or electron capture. This enables barcoding and tracking of nanoparticles with minimal halocode concentrations and without altering their physicochemical properties.
View Article and Find Full Text PDFRSC Chem Biol
December 2024
Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
We report targeted protein degradation through the site-specific recruitment of native ubiquitin ligases to a protein of interest conjugation of E3 ligase ligands. Direct comparison of degradation ability of proteins displaying the corresponding bioconjugation handle at different regions of protein surfaces was explored. We demonstrate the benefit of proximal lysine residues and investigate flexibility in linker length for the design of optimal degraders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!