Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nobiletin, a dietary citrus flavonoid, exerts biological activities against hyperlipidemia, obesity, and atherosclerotic cardiovascular diseases (ASCVDs). The aim of this study was to explore the lipid-lowering effects of nobiletin and the underlying molecular mechanisms in vitro in hepatic cells and in vivo in zebrafish models. Transcriptome and gene ontology (GO) analyses of differentially expressed genes (DEGs) by gene set enrichment analysis (GSEA) showed that a set of twenty-eight core enrichment DEGs associated with "GO BP regulation of lipid metabolic process" (GO: 0019216) were significantly downregulated in nobiletin-treated cells. Among these genes, angiopoietin-like 3 (ANGPTL3), an inhibitor of lipoprotein lipase (LPL) activity that regulates TG-rich lipoprotein (TGRL) metabolism in circulation, was the protein most markedly downregulated by nobiletin. Nobiletin (20 and 40 μM) significantly reduced the levels of ANGPTL3 mRNA and intracellular and secreted ANGPTL3 proteins in hepatic cell lines. Furthermore, alleviation of secreted ANGPTL3 production by nobiletin was found to reinstate LPL catalytic activity. Nobiletin significantly inhibited ANGPTL3 promoter activity and attenuated the transcription factor liver X receptor-α (LXRα)-mediated ANGPTL3 transcription. Molecular docking analysis predicted that nobiletin could bind to the ligand-binding domain of LXRα, thereby counteracting LXRα activation. In animal studies, orally administered nobiletin significantly alleviated the levels of plasma triglycerides (TGs) and cholesterol in zebrafish fed a high-fat diet. Moreover, nobiletin significantly reduced the amounts of hepatic ANGPTL3 protein in zebrafish. Our findings suggest that nobiletin may regulate the LXRα-ANGPTL3-LPL axis and exhibit lipid-modulating effects in vitro and in vivo. Thus, nobiletin is a potential ANGPTL3 inhibitor for the regulation of lipid metabolism to ameliorate dyslipidemia and ASCVDs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604320 | PMC |
http://dx.doi.org/10.3390/ijms232012485 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!