Few studies have examined the correlation between sperm miRNA levels and clinical outcomes of intracytoplasmic sperm injection (ICSI). In this study, we aimed to assess the correlation of sperm miR-34b, miR-34c, miR-122, and miR-429 levels with ICSI outcomes in men with teratozoospermia and asthenozoospermia. TaqMan microRNA quantitative polymerase chain reaction was used to evaluate the relative expression of miRNAs in sperm. The relative miRNA levels quantified using a comparative method found that the four miRNAs were not associated with fertilization rate and early embryo development. However, revels of miR-34b and miR-34c in teratozoospermia sperm of the live birth group were significantly higher than those in the non-live birth group. Receiver operating characteristic curve analysis revealed that the optimal cut-off delta cycle threshold values of miR-34b and miR-34c were 8.630 and 7.883, respectively. Statistical analysis found that the levels of miR-34b and the miR-34c in teratozoospermic and asthenozoospermic sperm above the thresholds were not associated with the fertilization rate and the high-quality embryo rate above 50%; however, they were more likely to exhibit higher implantation, pregnancy, and live birth rates. miR-34b and miR-34c were significantly associated with ICSI clinical outcomes in male factor infertility, especially teratozoospermia. Further validation is required before it becomes a clinically valid reference indicator.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604024 | PMC |
http://dx.doi.org/10.3390/ijms232012381 | DOI Listing |
Cells
November 2024
Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India.
The correlation between epigenetic alterations and the pathophysiology of human infertility is progressively being elucidated with the discovery of an increasing number of target genes that exhibit altered expression patterns linked to reproductive abnormalities. Several genes and molecules are emerging as important for the future management of human infertility. In men, microRNAs (miRNAs) like miR-34c, miR-34b, and miR-122 regulate apoptosis, sperm production, and germ cell survival, while other factors, such as miR-449 and sirtuin 1 (SIRT1), influence testicular health, oxidative stress, and mitochondrial function.
View Article and Find Full Text PDFZhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi
September 2024
School of Public Health, Hangzhou Medical College, Hangzhou 310000, China.
Curr Neuropharmacol
August 2024
Department of Medical, Surgical and Advanced Technologies 'G.F. Ingrassia', University of Catania, Catania, Italy.
Background: The identification of specific circulating miRNAs has been proposed as a valuable tool for elucidating the pathophysiology of brain damage or injury and predicting patient outcomes.
Objective: This study aims to apply several bioinformatic tools in order to clarify miRNA interactions with potential genes involved in brain injury, emphasizing the need of using a computational approach to determine the most likely correlations between miRNAs and target genes. Specifically, this study centers on elucidating the roles of miR-34b, miR-34c, miR-135a, miR-200c, and miR-451a.
Poult Sci
September 2024
Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China. Electronic address:
Semen quality is an important indicator that can directly affect fertility. In mammals, miRNAs in seminal plasma extracellular vesicles (SPEVs) and sperms can regulate semen quality. However, relevant regulatory mechanism in duck sperms remains largely unclear.
View Article and Find Full Text PDFHeliyon
April 2024
Department of Gastroenterology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan.
Neuroprotective therapeutic potential for restoring dysregulated microRNA (miRNA) expression has previously been demonstrated in a gerbil cerebral infarction model. However, since temporal changes in miRNA expression profiles following stroke onset are unknown, miRNAs proving to be useful therapeutic targets have yet to be identified. We evaluated cognitive function, hippocampal neuronal cell death, and microarray-based miRNA expression profiles at 5, 9, 18, 36, and 72 h after 5-min whole brain ischemia in gerbils.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!