The human immunodeficiency virus type 1 (HIV-1) has continued to be a global concern. With the new HIV incidence, the emergence of multi-drug resistance and the untoward side effects of currently used anti-HIV drugs, there is an urgent need to discover more efficient anti-HIV drugs. Modern computational tools have played vital roles in facilitating the drug discovery process. This research focuses on a pharmacophore-based similarity search to screen 111,566,735 unique compounds in the PubChem database to discover novel HIV-1 protease inhibitors (PIs). We used an in silico approach involving a 3D-similarity search, physicochemical and ADMET evaluations, HIV protease-inhibitor prediction (IC/percent inhibition), rigid receptor-molecular docking studies, binding free energy calculations and molecular dynamics (MD) simulations. The 10 FDA-approved HIV PIs (saquinavir, lopinavir, ritonavir, amprenavir, fosamprenavir, atazanavir, nelfinavir, darunavir, tipranavir and indinavir) were used as reference. The in silico analysis revealed that fourteen out of the twenty-eight selected optimized hit molecules were within the acceptable range of all the parameters investigated. The hit molecules demonstrated significant binding affinity to the HIV protease (PR) when compared to the reference drugs. The important amino acid residues involved in hydrogen bonding and п-п stacked interactions include ASP25, GLY27, ASP29, ASP30 and ILE50. These interactions help to stabilize the optimized hit molecules in the active binding site of the HIV-1 PR (PDB ID: 2Q5K). HPS/002 and HPS/004 have been found to be most promising in terms of IC/percent inhibition (90.15%) of HIV-1 PR, in addition to their drug metabolism and safety profile. These hit candidates should be investigated further as possible HIV-1 PIs with improved efficacy and low toxicity through in vitro experiments and clinical trial investigations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9603388 | PMC |
http://dx.doi.org/10.3390/ijms232012149 | DOI Listing |
Environ Res
December 2024
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China. Electronic address:
Diffusible signal factor (DSF)-c-di-GMP-mediated strategies have been proposed as an effective regulatory approach for signal molecules in aerobic granular sludge (AGS). The increase in temperature from low to normal levels had a significant impact on AGS stability. In this study, two reactors were established to investigate the effects of different temperature rise modes (abrupt or gradual) on AGS stability.
View Article and Find Full Text PDFACS Earth Space Chem
December 2024
Thermal Protection Materials Branch, NASA Ames Research Center, Moffett Field, California 94035, United States.
Molecular dynamics simulations were performed to characterize reaction products, resulting from solar wind irradiation, namely, H, of methane and methane-water ices. In our approach, we used seven 0.829 keV H (total energy of 5.
View Article and Find Full Text PDFThe peptidoglycan (PG) cell wall is the primary protective layer of bacteria, making the process of PG synthesis a key antibiotic target. Class A penicillin-binding proteins (aPBPs) are a family of conserved and ubiquitous PG synthases that fortify and repair the PG matrix. In gram-negative bacteria, these enzymes are regulated by outer-membrane tethered lipoproteins.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China. Electronic address:
The demand for lightweight heat dissipation design in highly miniaturized and portable electronic devices with high thermal density is becoming increasingly urgent. Herein, highly thermal conductive carbon nanotubes (CNTs) reinforced aluminum foam composites were prepared by catalyst chemical bath and subsequent in-situ growth approach. The dense CNTs show the intertwined structure features and construct high-speed channels near the surface of the skeletons for efficient thermal conduction, promoting the transport efficiency of heat flow.
View Article and Find Full Text PDFJ Med Chem
December 2024
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
Fluorine (F) substitution is a common method of drug discovery and development. However, there are no accurate approaches available for predicting the bioactivity changes after F-substitution, as the effect of substitution on the interactions between compounds and proteins (CPI) remains a mystery. In this study, we constructed a data set with 111,168 pairs of fluorine-substituted and nonfluorine-substituted compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!