(1) Background: Genomic testing is increasingly utilized as a clinical tool; however, its integration into nephrology remains limited. The purpose of this study was to identify barriers and prioritize interventions for the widespread implementation of genomics in nephrology. (2) Methods: Qualitative, semi-structured interviews were conducted with 25 Australian adult nephrologists to determine their perspectives on interventions and models of care to support implementation of genomics in nephrology. Interviews were guided by a validated theoretical framework for the implementation of genomic medicine-the Consolidated Framework of Implementation Research (CFIR). (3) Results: Nephrologists were from 18 hospitals, with 7 having a dedicated multidisciplinary kidney genetics service. Most practiced in the public healthcare system (n = 24), a large number were early-career (n = 13), and few had genomics experience (n = 4). The top three preferred interventions were increased funding, access to genomics champions, and education and training. Where interventions to barriers were not reported, we used the CFIR/Expert Recommendations for Implementing Change matching tool to generate theory-informed approaches. The preferred model of service delivery was a multidisciplinary kidney genetics clinic. (4) Conclusions: This study identified surmountable barriers and practical interventions for the implementation of genomics in nephrology, with multidisciplinary kidney genetics clinics identified as the preferred model of care. The integration of genomics education into nephrology training, secure funding for testing, and counselling along with the identification of genomics champions should be pursued by health services more broadly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601730PMC
http://dx.doi.org/10.3390/genes13101919DOI Listing

Publication Analysis

Top Keywords

implementation genomics
16
genomics nephrology
16
multidisciplinary kidney
12
kidney genetics
12
support implementation
8
genomics
8
framework implementation
8
genomics champions
8
preferred model
8
implementation
6

Similar Publications

Summary: Gene and genome duplications are major evolutionary forces that shape the diversity and complexity of life. However, different duplication modes have distinct impacts on gene function, expression, and regulation. Existing tools for identifying and classifying duplicated genes are either outdated or not user-friendly.

View Article and Find Full Text PDF

The 18 Workshop on Recent Issues in Bioanalysis (18 WRIB) took place in San Antonio, TX, USA on May 6-10, 2024. Over 1100 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 18 WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.

View Article and Find Full Text PDF

Genetic polymorphism of the dihydropyrimidine dehydrogenase gene () is responsible for the variability found in the metabolism of fluoropyrimidines such as 5-fluorouracil (5-FU), capecitabine, or tegafur. The genotype is linked to variability in enzyme activity, 5-FU elimination, and toxicity. Approximately 10-40% of patients treated with fluoropyrimidines develop severe toxicity.

View Article and Find Full Text PDF

Rift Valley fever (RVF) is a devastating zoonotic mosquito-borne viral hemorrhagic fever disease that threats human and animal health and biodiversity in Africa, including in Rwanda. RVF is increasingly outbreaking in Africa, leading to devastating impacts on health, socioeconomic stability and growth, and food insecurity in the region, particularly among livestock-dependent communi-ties. This systematic review synthesizes existing evidence on RVF's epidemiology, transmission dynamics, and the prevention and control measures implemented in Rwanda.

View Article and Find Full Text PDF

Coronary atherosclerosis (CAD) is characterized by arterial intima lipid deposition, chronic inflammation, and fibrous tissue proliferation, leading to arterial wall thickening and lumen narrowing. As the primary cause of coronary heart disease and acute coronary syndrome, CAD significantly impacts global health. Recent genetic studies have demonstrated CAD's polygenic and multifactorial nature, providing molecular insights for early diagnosis and risk assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!