Adaptive Response and Transcriptomic Analysis of Flax ( L.) Seedlings to Salt Stress.

Genes (Basel)

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.

Published: October 2022

Soil salinity constrains agricultural development in arid regions. Flax is an economically important crop in many countries, and screening or breeding salinity-resistant flax cultivars is necessary. Based on the previous screening of flaxseed cultivars C71 (salt-sensitive) and C116 (salt-tolerant) as test materials, flax seedlings stressed with different concentrations of NaCl (0, 100, 150, 200, and 250 mmol/L) for 21 days were used to investigate the effects of salt stress on the growth characteristics, osmotic regulators, and antioxidant capacity of these flax seedlings and to reveal the adaptive responses of flax seedlings to salt stress. The results showed that plant height and root length of flax were inhibited, with C116 showing lower growth than C71. The concentrations of osmotic adjustment substances such as soluble sugars, soluble proteins, and proline were higher in the resistant material, C116, than in the sensitive material, C71, under different concentrations of salt stress. Consistently, C116 showed a better rapid scavenging ability for reactive oxygen species (ROS) and maintained higher activities of antioxidant enzymes to balance salt injury stress by inhibiting growth under salt stress. A transcriptome analysis of flax revealed that genes related to defense and senescence were significantly upregulated, and genes related to the growth and development processes were significantly downregulated under salt stress. Our results indicated that one of the important adaptations to tolerance to high salt stress is complex physiological remediation by rapidly promoting transcriptional regulation in flax.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601370PMC
http://dx.doi.org/10.3390/genes13101904DOI Listing

Publication Analysis

Top Keywords

salt stress
28
flax seedlings
16
flax
9
analysis flax
8
salt
8
seedlings salt
8
stress
8
c71 concentrations
8
adaptive response
4
response transcriptomic
4

Similar Publications

Climate change has caused many challenges to soil ecosystems, including soil salinity. Consequently, many strategies are advised to mitigate this issue. In this context, biochar is acknowledged as a useful addition that can alleviate the detrimental impacts of salt stress on plants.

View Article and Find Full Text PDF

Soil salinization has resulted in a significant decrease in crop yields, particularly affecting the production of crops like rice ( L.). Prohexadione calcium (Pro-Ca) can enhance crop resilience against failure by managing plant height.

View Article and Find Full Text PDF

In our previous study, three genes highly expressed in the roots of wheat were screened. To explore the effects of adverse stresses on the wheat root phenotype and the expression of , and , we measured the phenotypic parameters of the JM22 root system at the seedling stage after treatment with different concentrations of NaCl and PEG6000. Additionally, the relative expression levels of TaPSK3, TaPSK9, and TaPSK10 were analyzed via RT-qPCR within 72 h of treatment with 150 mM NaCl and 30% PEG6000.

View Article and Find Full Text PDF

WOX transcription factors (TFs) are plant specific transcription regulatory factors that have a momentous role in maintaining plant growth and development and responding to abiotic stress. In this study, a total of 13 PdbWOX genes were identified. qRT-PCR analyses showed that 13 PdbWOX genes were responsive to salt stress.

View Article and Find Full Text PDF

Myocardial dysfunction is a crucial determinant of the development of heart failure in salt-sensitive hypertension. Ferroptosis, a programmed iron-dependent cell death, has been increasingly recognised as an important contributor to the pathophysiology of various cardiovascular diseases. This study aims to investigate the role and underlying mechanism of ferroptosis in high-salt (HS)-induced myocardial damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!