Early muscle development involves the proliferation and differentiation of stem cells (satellite cells, SCs) in the mesoderm to form multinucleated myotubes that mature into muscle fibers and fiber bundles. Proliferation of SCs increases the number of cells available for muscle formation while simultaneously maintaining a population of cells for future response. Differentiation dramatically changes properties of the SCs and environmental stressors can have long lasting effects on muscle growth and physiology. This study was designed to characterize transcriptional changes induced in turkey SCs undergoing differentiation under thermal challenge. Satellite cells from the () muscle of 1-wk old commercial fast-growing birds (Nicholas turkey, NCT) and from a slower-growing research line (Randombred Control Line 2, RBC2) were proliferated for 72 h at 38 °C and then differentiated for 48 h at 33 °C (cold), 43 °C (hot) or 38 °C (control). Gene expression among thermal treatments and between turkey lines was examined by RNAseq to detect significant differentially expressed genes (DEGs). Cold treatment resulted in significant gene expression changes in the SCs from both turkey lines, with the primary effect being down regulation of the DEGs with overrepresentation of genes involved in regulation of skeletal muscle tissue regeneration and sarcomere organization. Heat stress increased expression of genes reported to regulate myoblast differentiation and survival and to promote cell adhesion particularly in the NCT line. Results suggest that growth selection in turkeys has altered the developmental potential of SCs in commercial birds to increase hypertrophic potential of the muscle and sarcomere assembly. The biology of SCs may account for the distinctly different outcomes in response to thermal challenge on breast muscle growth, development, and structure of the turkey.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601516 | PMC |
http://dx.doi.org/10.3390/genes13101857 | DOI Listing |
FASEB J
January 2025
Shirley Ryan AbilityLab, Chicago, Illinois, USA.
Following injury, skeletal muscle undergoes repair via satellite cell (SC)-mediated myogenic progression. In SCs, the circadian molecular clock gene, Bmal1, is necessary for appropriate myogenic progression and repair with evidence that muscle molecular clocks can also affect force production. Utilizing a mouse model allowing for inducible depletion of Bmal1 within SCs, we determined contractile function, SC myogenic progression and muscle damage and repair following eccentric contractile-induced injury.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Xidian University, Xi'an 710071, PR China.
Commercial SnO nanocrystals used for producing electron transporting layers (ETLs) of perovskite solar cells (PSC) are prone to aggregation at room temperature and contain many structural defects. Herein, we report that the LiOH additive can simultaneously delay the aggregation and donate the beneficial aging effect to SnO nanocrystals. The resulting SnO ETLs show the desired characteristics, including a broadened absorption range, reduced defects, improved transporting properties, and decreased work function.
View Article and Find Full Text PDFThe eukaryotic genome is packaged into chromatin, which is composed of a nucleosomal filament that coils up to form more compact structures. Chromatin exists in two main forms: euchromatin, which is relatively decondensed and enriched in transcriptionally active genes, and heterochromatin, which is condensed and transcriptionally repressed . It is widely accepted that chromatin architecture modulates DNA accessibility, restricting the access of sequence-specific, gene-regulatory, transcription factors to the genome.
View Article and Find Full Text PDFUnlabelled: is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and . CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML), and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing de-repression of silenced elements in heterochromatin.
View Article and Find Full Text PDFSkeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) are increased in satellite cells after muscle injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!