Classification of Protein Sequences by a Novel Alignment-Free Method on Bacterial and Virus Families.

Genes (Basel)

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China.

Published: September 2022

The classification of protein sequences provides valuable insights into bioinformatics. Most existing methods are based on sequence alignment algorithms, which become time-consuming as the size of the database increases. Therefore, there is a need to develop an improved method for effectively classifying protein sequences. In this paper, we propose a novel accumulated natural vector method to cluster protein sequences at a lower time cost without reducing accuracy. Our method projects each protein sequence as a point in a 250-dimensional space according to its amino acid distribution. Thus, the biological distance between any two proteins can be easily measured by the Euclidean distance between the corresponding points in the 250-dimensional space. The convex hull analysis and classification perform robustly on virus and bacteria datasets, effectively verifying our method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9602327PMC
http://dx.doi.org/10.3390/genes13101744DOI Listing

Publication Analysis

Top Keywords

protein sequences
16
classification protein
8
250-dimensional space
8
method
5
sequences
4
sequences novel
4
novel alignment-free
4
alignment-free method
4
method bacterial
4
bacterial virus
4

Similar Publications

Slight thermal stress exerts genetic diversity selection at coral (Acropora digitifera) larval stages.

BMC Genomics

January 2025

Sesoko Marine Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227, Japan.

Background: Rising seawater temperatures increasingly threaten coral reefs. The ability of coral larvae to withstand heat is crucial for maintaining reef ecosystems. Although several studies have investigated coral larvae's genetic responses to thermal stress, most relied on pooled sample sequencing, which provides population-level insights but may mask individual genotype variability.

View Article and Find Full Text PDF

Background: Gyrodactylus von Nordmann, 1832, a genus of viviparous parasites within the family Gyrodactylidae, contains one of the largest nominal species in the world. Gyrodactylus pseudorasborae Ondračková, Seifertová & Tkachenko, 2023 widely distributed in Europe and China, although its mitochondrial genome remains unclear. This study aims to sequence the mitogenome of G.

View Article and Find Full Text PDF

Chromosome-level reference genome and annotation of the Arctic fish Anisarchus medius.

Sci Data

January 2025

State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.

Anisarchus medius (Reinhardt, 1837) is a widely distributed Arctic fish, serving as an indicator of climate change impacts on coastal Arctic ecosystems. This study presents a chromosome-level genome assembly for A. medius using PacBio sequencing and Hi-C technology.

View Article and Find Full Text PDF

Transmembrane AMPA receptor regulatory proteins (TARPs) are claudin-like proteins that tightly regulate AMPA receptors (AMPARs) and are fundamental for excitatory neurotransmission. With cryo-electron microscopy (cryo-EM) we reconstruct the 36 kDa TARP subunit γ2 to 2.3 Å, which points to structural diversity among TARPs.

View Article and Find Full Text PDF

Conjugation plays a major role in dissemination of antimicrobial resistance genes. Following transfer of IncF-like plasmids, recipients become refractory to a second wave of conjugation with the same plasmid via entry (TraS) and surface (TraT) exclusion mechanisms. Here, we show that TraT from the pKpQIL and F plasmids (TraT and TraT) exhibits plasmid surface exclusion specificity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!