"Alzheimer's disease" (AD) is a neurodegenerative disorder in which the memory shrinks and neurons die. "Dementia" is described as a gradual decline in mental, psychological, and interpersonal qualities that hinders a person's ability to function autonomously. AD is the most common degenerative brain disease. Among the first signs of AD are missing recent incidents or conversations. "Deep learning" (DL) is a type of "machine learning" (ML) that allows computers to learn by doing, much like people do. DL techniques can attain cutting-edge precision, beating individuals in certain cases. A large quantity of tagged information with multi-layered "neural network" architectures is used to perform analysis. Because significant advancements in computed tomography have resulted in sizable heterogeneous brain signals, the use of DL for the timely identification as well as automatic classification of AD has piqued attention lately. With these considerations in mind, this paper provides an in-depth examination of the various DL approaches and their implementations for the identification and diagnosis of AD. Diverse research challenges are also explored, as well as current methods in the field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601959 | PMC |
http://dx.doi.org/10.3390/healthcare10101842 | DOI Listing |
Ann Transl Med
December 2024
Division of Cardiothoracic Surgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China.
Background And Objective: Patients with thoracic aortic aneurysm and dissection (TAAD) are often asymptomatic but present acutely with life threatening complications that necessitate emergency intervention. Aortic diameter measurement using computed tomography (CT) is considered the gold standard for diagnosis, surgical planning, and monitoring. However, manual measurement can create challenges in clinical workflows due to its time-consuming, labour-intensive nature and susceptibility to human error.
View Article and Find Full Text PDFAdv Appl Bioinform Chem
January 2025
Department of Information Technology, Mutah University, Al-Karak, Jordan.
Purpose: The incidence of cancer, which is a serious public health concern, is increasing. A predictive analysis driven by machine learning was integrated with haematology parameters to create a method for the simultaneous diagnosis of several malignancies at different stages.
Patients And Methods: We analysed a newly collected dataset from various hospitals in Jordan comprising 19,537 laboratory reports (6,280 cancer and 13,257 noncancer cases).
Over the past decade, there has been a global increase in the incidence of skin cancers. Skin cancer has serious consequences if left untreated, potentially leading to more advanced cancer stages. In recent years, deep learning based convolutional neural network have emerged as powerful tools for skin cancer detection.
View Article and Find Full Text PDFHeliyon
January 2025
BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
Deformable image registration is a cornerstone of many medical image analysis applications, particularly in the context of fetal brain magnetic resonance imaging (MRI), where precise registration is essential for studying the rapidly evolving fetal brain during pregnancy and potentially identifying neurodevelopmental abnormalities. While deep learning has become the leading approach for medical image registration, traditional convolutional neural networks (CNNs) often fall short in capturing fine image details due to their bias toward low spatial frequencies. To address this challenge, we introduce a deep learning registration framework comprising multiple cascaded convolutional networks.
View Article and Find Full Text PDFHeliyon
July 2024
College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive neuroimaging technique widely utilized in the research of Autism Spectrum Disorder (ASD), providing preliminary insights into the potential biological mechanisms underlying ASD. Deep learning techniques have demonstrated significant potential in the analysis of rs-fMRI. However, accurately distinguishing between healthy control group and ASD has been a longstanding challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!