In this study, we use vibrational optical coherence tomography (VOCT) to examine the morphology and stiffness of benign and cancerous lesions. Lesion images and 3D plots of weighted displacement versus frequency and depth were used to compare the cellular, dermal collagen, new blood vessels, and fibrotic composition of normal skin, actinic keratoses (AK), nodular and superficial basal cell carcinomas (BCCs), squamous cell carcinomas (SCCs), and melanomas. The results of this study suggest that benign and cancerous lesions differ based on the addition of new cells with increased resonant frequency and stiffness (80 Hz, 1.8 MPa), new blood vessel peaks (130 Hz, 4.10 MPa) that appear to be less stiff than normal blood vessels, and new fibrous tissue peaks (260 Hz, 15-17 MPa) that are present in carcinomas but not in normal skin and only partially present (80 Hz and 130 Hz only) in AKs. Results obtained by creating images based on the location of the 80 Hz, 130 Hz, and 260 Hz peaks of cancerous skin lesions suggest that the fibrous tissue appears to surround the new cells and new lesion blood vessels. The results of this study suggest that the morphology and location of the fibrous tissues in relation to the new cancer-associated cells and lesion blood vessels may provide information on the invasiveness and metastatic potential of skin cancers. The invasiveness and metastatic potential of melanomas may be a result of the cancer-associated cells laying down fibrous tissue that is used as a pathway for migration. The new cancer-associated blood vessels in the vicinity of the new cancer-associated cells may promote this migration and eventual metastasis. The ratios of peak heights 50/130 Hz and 80/130 Hz of normal cells, new lesion cells, new lesion blood vessels, and fibrotic tissue may be used as a "fingerprint" for detecting melanoma and to differentiate it from other skin cancers non-invasively using VOCT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9599110 | PMC |
http://dx.doi.org/10.3390/biom12101332 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!