Numerous studies have demonstrated that animal brains accurately infer whether multisensory stimuli are from a common source or separate sources. Previous work proposed that the multisensory neurons in the dorsal medial superior temporal area (MST-d) serve as integration or separation encoders determined by the tuning-response ratio. However, it remains unclear whether MST-d neurons mainly take a sense input as a spatial coordinate reference for carrying out multisensory integration or separation. Our experimental analysis shows that the preferred tuning response to visual input is generally larger than vestibular according to the Macaque MST-d neuronal recordings. This may be crucial to serving as the base of coordinate reference when the subject perceives moving direction information from two senses. By constructing a flexible Monte-Carlo probabilistic sampling (fMCS) model, we validate this hypothesis that the visual and vestibular cues are more likely to be integrated into a visual-based coordinate rather than vestibular. Furthermore, the property of the tuning gradient also affects decision-making regarding whether the cues should be integrated or not. To a dominant modality, an effective decision is produced by a steep response-tuning gradient of the corresponding neurons, while to a subordinate modality a steep tuning gradient produces a rigid decision with a significant bias to either integration or separation. This work proposes that the tuning response amplitude and tuning gradient jointly modulate which modality serves as the base coordinate for the reference frame and the direction change with which modality is decoded effectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9599195 | PMC |
http://dx.doi.org/10.3390/brainsci12101387 | DOI Listing |
Nat Plants
January 2025
Boyce Thompson Institute, Ithaca, NY, USA.
Hornworts, one of the three bryophyte phyla, show some of the deepest divergences in extant land plants, with some families separated by more than 300 million years. Previous hornwort genomes represented only one genus, limiting the ability to infer evolution within hornworts and their early land plant ancestors. Here we report ten new chromosome-scale genomes representing all hornwort families and most of the genera.
View Article and Find Full Text PDFBehav Res Methods
January 2025
Department of Psychology, University of Quebec at Trois-Rivières, Trois-Rivières, Canada.
Frequently, we perceive emotional information through multiple channels (e.g., face, voice, posture).
View Article and Find Full Text PDFSci Rep
January 2025
Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan.
The chloroplast (cp) genome is a widely used tool for exploring plant evolutionary relationships, yet its effectiveness in fully resolving these relationships remains uncertain. Integrating cp genome data with nuclear DNA information offers a more comprehensive view but often requires separate datasets. In response, we employed the same raw read sequencing data to construct cp genome-based trees and nuclear DNA phylogenetic trees using Read2Tree, a cost-efficient method for extracting conserved nuclear gene sequences from raw read data, focusing on the Aurantioideae subfamily, which includes Citrus and its relatives.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China.
Photocatalytic overall water splitting is a promising approach for a sustainable hydrogen provision using solar energy. For sufficient solar energy utilization, this reaction ought to be operated based on visible-light-active semiconductors, which is very challenging. In this work, an F-expedited nitridation strategy is applied to modify the wide-bandgap semiconductor SrTiO for visible-light-driven photocatalytic overall water splitting.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210
Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying CA1 PC differentiation and the development of this inhibitory circuit motif.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!